Appendices

New York Control Area Installed Capacity Requirement

For the Period May 2015 To April 2016

December 5, 2014

New York State Reliability Council, LLC Installed Capacity Subcommittee

Table of Contents

A. Reliability Calculation Models and Assumptions	6
A.1 GE MARS	8
A.2 Methodology	12
A.3 Base Case Modeling Assumptions	13
A.4 MARS Data Scrub	44
B. Details for Study Results	48
B.1 Sensitivity Results	48
B.2 Environmental Regulations	50
B.3 Frequency of Implementing Emergency Operating Procedures	53
C. ICAP to UCAP Translation	55
C.1 NYCA and NYC and LI Locational Translations	56
C.2 Transmission Districts ICAP to UCAP Translation	61
C.3 Wind Resource Impact on the NYCA IRM and UCAP Markets	69
D. Glossary	

Table of Tables & Figures

Figure A-1 NYCA ICAP Modeling	6
Table A-1 Modeling Details	7
Equation A-1 Transition Rate Definition	9
Equation A-2 Transition Rate Calculation Example	9
Table A-2 State Transition Rate Example	10
Table A-3 Load Model	13
Table A-4 2015 Final NYCA Peak Load Forecast	15
Table A-5 2015 Load Forecast Uncertainty Models	16
Figure A-2 LFU Distributions	17
Figure A-3 Per Unit Load Shapes	18
Table A-6 Capacity Resources	19
Table A-7 Wind Generation	22
Figure A-4 NYCA Annual Zonal EFORds	24
Figure A-5 Five-Year Zonal EFORds	25
Figure A-6 NYCA Annual Availability by Fuel	26
Figure A-7 NYCA Five-Year Availability by Fuel	27
Figure A-8 NERC Annual Availability by Fuel	28
Figure A-9 NERC Five-Year Availability by Fuel	29
Figure A-10 Planned and Maintenance Outage Rates	32
Figure A-11 Scheduled Maintenance	33
Table A-8 Transmission System Model	34
Table A-9 Interface Limits Updates	35
Figure A-12 2015 Transmission Representation	36
Figure A-13 PJM – SENY Interface Model	37
Figure A-14 Full New England Representation	38
Table A-10 External Area Representations	40
Table A-11 Outside World Reserve Margins	41
Table A-12 Assumptions for Emergency Operating Procedures	41
Table A-13 Emergency Operating Procedures Values	42
Table A-14 SCR Performance	43
Table A-15 GE MARS Data Scrub	44
Table A-16 NYISO MARS Data Scrub	45
Table A-17 Transmission Owner Data Scrub	45
Table B-1 Sensitivity Case Results	49
Table B-2 Summary of Environmental Programs	51
Table B-3: Summary of Potentially Significant Operational Impacts due to New Environmental	
Regulations	52
Table B-4 Implementation of EOP steps	53
Table C-1 Historical NYCA Capacity Parameters	55

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Page ii

Table C-2 NYCA ICAP to UCAP Translation	57
Table C-3 New York City ICAP to UCAP Translation	58
Table C-4 Long Island ICAP to UCAP Translation	59
Table C-5 GHIJ ICAP to UCAP Translation	60
Table C-6 Central Hudson Gas & Electric ICAP to UCAP Translation	61
Table C-7 Con Ed ICAP to UCAP Translation	62
Table C-8 LIPA ICAP to UCAP Translation	63
Table C-9 NGRID ICAP to UCAP Translation	64
Table C-10 NYPA ICAP to UCAP Translation	65
Table C-11 NYSEG ICAP to UCAP Translation	66
Table C-52 O & R ICAP to UCAP Translation	67
Table C-63 RGE ICAP to UCAP Translation	68

Appendices

Appendix A

NYCA Installed Capacity Requirement Reliability Calculation Models and Assumptions

Description of the GE MARS Program: Load, Capacity, Transmission, Outside World Model, and Assumptions

A. Reliability Calculation Models and Assumptions

The reliability calculation process for determining the NYCA IRM requirement utilizes a probabilistic approach. This technique calculates the probabilities of outages of generating units, in conjunction with load and transmission models, to determine the number of days per year of expected capacity shortages. The General Electric Multi-Area Reliability Simulation (GE-MARS) is the primary computer program used for this probabilistic analysis. The result of the calculation for "Loss of Load Expectation" (LOLE) provides a consistent measure of system reliability. The various models used in the NYCA IRM calculation process are depicted in Figure A-1 below.

Table A-1 lists the study parameters in the Figure A-1 models, the source for the study assumptions, and where in Appendix A the assumptions are described. Finally, section A-3 compares the assumptions used in the 2014 and 2015 IRM reports.

Figure A-1 NYCA ICAP Modeling

Table A-1 Modeling Details

#	Parameter	Description Source		Reference
		Internal NYCA Modelin	g	
1	GE MARS	General Electric Multi-Area Reliability Simulation Program		Section A-1
2	11 Zones	Load Areas	Fig A-1	NYISO Accounting & Billing Manual
3	Zone Capacity Models	Generator models for each generating in zone Generator availability Unit ratings	GADS data 2014 Gold Book ¹	Section A-3.2
4	Emergency Operating Procedures	Reduces load during emergency conditions to maintain operating reserves	NYISO	Section A-3.5
5	Zone Load Models	Hourly loads	NYCA load shape and peak forecasts	Section A-3.1
6	Load Uncertainty Model	Account for forecast uncertainty due to weather conditions	Historical data	Section A-3.1
7	Transmission Capacity Model	Emergency transfer limits of transmission interfaces between zones	NYISO Transmission Studies	Section A-3.3
		External Control Area Mod	leling	
8	Ontario, Quebec, ISONE, PJM Control Area Parameters	See items 9-12 below	Supplied by External Control Area	
9	External Control Area Capacity models	Generator models in neighboring Control Areas	Supplied by External Control Area	Section A-3.4
10	External Control Area Load Models	Hourly loads	Supplied by External Control Area	Section A-3.4
11	External Control Area Load Uncertainty Models	Account for forecast uncertainty due to economic conditions	Supplied by External Control Area	Section A-3.4
12	Interconnection Capacity Models	Emergency transfer limits of transmission interfaces between control areas.	Supplied by External Control Area	Section A-3.3

¹ 2014 Load and Capacity Data Report,

http://www.nyiso.com/public/markets_operations/services/planning/documents/index.jsp

A.1 GE MARS

As the primary probabilistic analysis tool used for establishing NYCA IRM requirements, the GE-MARS program includes a detailed load, generation, and transmission representation for 11 NYCA Zones, as well as the four external Control Areas (Outside World Areas) interconnected to the NYCA (see Section A-3 for a description of these Zones and Outside World Areas).

A sequential Monte Carlo simulation forms the basis for GE-MARS. The Monte Carlo method provides a fast, versatile, and easily expandable program that can be used to fully model many different types of generation, transmission, and demand-side options. GE-MARS calculates the standard reliability indices of daily and hourly LOLE (days/year and hours/year) and Loss of Energy Expectation (LOEE in MWh/year). The use of sequential Monte Carlo simulation allows for the calculation of time-correlated measures such as frequency (outages/year) and duration (hours/outage). The program also calculates the need for initiating Emergency Operating Procedures (EOPs), expressed in days/year (see Section A-3.5).

In addition to calculating the expected values for the reliability indices, GE-MARS also produces probability distributions that show the actual yearly variations in reliability that the NYCA could be expected to experience. In determining NYCA reliability, there are several types of randomly occurring events that must be taken into consideration. Among these are the forced outages of generating units and transmission capacity. Monte Carlo simulation models the effects of such random events. Deviations from the forecasted loads are captured by the use of a load forecast uncertainty model.

Monte Carlo simulation approaches can be categorized as "non-sequential" and "sequential". A non-sequential simulation process does not move through time chronologically or sequentially, but rather considers each hour independent of every other hour. Because of this, non-sequential simulation cannot accurately model issues that involve time correlations, such as maintenance outages, and cannot be used to calculate time-related indices such as frequency and duration.

Sequential Monte Carlo simulation (used by GE-MARS) steps through the year chronologically, recognizing the status of equipment is not independent of its status in adjacent hours. Equipment forced outages are modeled by taking the equipment out of service for contiguous hours, with the length of the outage period being determined from the equipment's mean time to repair. Sequential simulation can

model issues of concern that involve time correlations, and can be used to calculate indices such as frequency and duration. It also models transfer limitations between individual areas.

Because the GE-MARS Program is based on a sequential Monte Carlo simulation, it uses state transition rates, rather than state probabilities, to describe the random forced outages of the thermal units. State probabilities give the probability of a unit being in a given capacity state at any particular time, and can be used if one assumes that the unit's capacity state for a given hour is independent of its state at any other hour. Sequential Monte Carlo simulation recognizes the fact that a unit's capacity state in any given hour is dependent on a given state in previous hours and influences its state in future hours. It thus requires additional information that is contained in the transition rate data.

For each unit, a transition rate matrix is input that shows the transition rates to go from each capacity state to each other capacity state. The transition rate from state A to state B is defined as the number of transitions from A to B per unit of time in state A (Equation A-1).

Equation A-1 Transition Rate Definition

 $Transition (A to B) = \frac{Number of Transitions from A to B}{Total Time in State A}$

Table A-2 shows the calculation of the state transition rates from historic data for one year. The Time-in-State Data shows the amount of time that the unit spent in each of the available capacity states during the year; the unit was on planned outage for the remaining 760 hours. The Transition Data shows the number of times that the unit transitioned from each state to each other state during the year. The State Transition Rates can be calculated from this data. For example, the transition rate from state 1 to state 2 equals the number of transitions from 1 to 2 divided by the total time spent in state 1 (Equation A-2).

Equation A-2 Transition Rate Calculation Example

 $Transition (1 to 2) = \frac{(10 Transitions)}{5,000 Hours}$ = 0.002

Tim	ne in State D	Data		Transition Data			
State	N // N /	Hours		From	To State	To State	To State
State		nours		State	1	2	3
1	200	5000		1	0	10	5
2	100	2000		2	6	0	12
3	0	1000		3	9	8	0
			State Trans	sition Rates			
From State To Stat		ate 1	To St	ate 2	To St	ate 3	
	1 0.		0.000		02	0.0	001
	2 0.003 0.000		0.003		000	0.0	006
	3	0.0	009	0.0	008	0.0	000

Table A-2 State Transition Rate Example

From the state transition rates for a unit, the program calculates the two important quantities that are needed to model the random forced outages on the unit: the average time that the unit resides in each capacity state, and the probability of the unit transitioning from each state to each other state.

Whenever a unit changes capacity states, two random numbers are generated. The first is used to calculate the amount of time that the unit will spend in the current state; it is assumed that the time in a state is exponentially distributed, with a mean as computed from the transition rates. This time in state is added to the current simulation time to calculate when the next random state change will occur. The second random number is combined with the state transition probabilities to determine the state to which the unit will transition when it leaves its current state. The program thus knows for every unit on the system, its current state, when it will be leaving that state, and the state to which it will go next.

Each time a unit changes state, because of random state changes, the beginning or ending of planned outages, or mid-year installations or retirements, the total capacity available in the unit's area is updated to reflect the change in the unit's available capacity. This total capacity is then used in computing the area margins each hour.

A.1.1 Error Analysis

An important issue in using Monte Carlo simulation programs such as GE-MARS is the number of years of artificial history (or replications) that must be created to achieve an acceptable level of statistical convergence in the expected value of the reliability index of interest. The degree of statistical convergence is measured by the standard deviation of the estimate of the reliability index that is calculated from the simulation data.

The standard deviation has the same physical units (e.g., days/year) as the index being estimated, and thus its magnitude is a function of the type of index being estimated. Because the standard deviation can assume a wide range of values, the degree of convergence is often measured by the standard error, which is the standard deviation of the estimated mean expressed as a per unit of the mean.

Convergence can also be expressed in terms of a confidence interval that defines the range in which you can state, with a given level of confidence that the actual value falls within the interval. For example, a range centered on the mean of two standard deviations in each direction (plus and minus) defines a confidence interval of 95%.

For this analysis, the Base Case required 195 replications to converge to a daily LOLE for NYCA of 0.100 days/year with a standard error of 0.05 per unit. The Base Case required 889 replications to converge to a standard error of 0.025. For our cases, the model was run to 1500 replications at which point the standard error was 0.019. The confidence interval at this point ranges from 17.1% to 17.5%. At that point the LOLE for NYCA was 0.100days/year. It should be recognized that a 17.3% IRM is in full compliance with the NYSRC Resource Adequacy rules and criteria (see Base Case Study Results section).

A.1.2 Conduct of the GE-MARS analysis

The study was performed using Version 3.18² of the GE-MARS software program. This new version was benchmark tested by the NYISO.

The current base case is the culmination of the individual changes made to last year's base case. Each change, however, is evaluated individually against last year's base case. The LOLE results of each of these pre-base case

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

² This new GE-MARS version incorporates peak load logic enhancements.

simulations are reviewed to confirm that the reliability impact of the change is reasonable and explainable.

General Electric was asked to review the input data for errors. They have developed a program called "Data Scrub" which processes the input files and flags data that appears to be out of the ordinary. For example, it can identify a unit with a forced outage rate significantly higher than all the others in that size and type category. If something is found, the ISO reviews the data and either confirms that it is correct as is, or institutes a correction. The results of this data scrub are shown in Section A-4.

The top three summer peak loads of all Areas external to NYCA are aligned to be on the same days as that of NYCA, even though they may have historically occurred at different times. This is a conservative approach, using the assumption that peak conditions could be the result of a wide spread heat wave. This would result in reducing the amount of assistance that NYCA could receive from the other Areas.

A.2 Methodology

The 2015 IRM study continues to use the Unified Methodology that simultaneously provides a basis for the NYCA installed reserve requirements and locational installed capacity requirements. The IRM/MLCR characteristic consists of a curve function, "a knee of the curve" and straight line segments at the asymptotes. The curve function is represented by a quadratic (second order) curve which is the basis for the Tan 45 inflection point calculation. Inclusion of IRM/MLCR point pairs remote to the "knee of the curve" may impact the calculation of the quadratic curve function used for the Tan 45 calculation.

The procedure for determining the best fit curve function used for the calculation of the Tan 45 inflection point to define the base case requirement is based on the following methodology:

- 1) Start with all points on IRM/MLCR Characteristic.
- 2) Develop regression curve equations for all different point to point segments consisting of at least four consecutive points.
- 3) Rank all the regression curve equations based on the following:
 - Sort regression equations with highest R2.
 - Ensure calculated IRM is within the selected point pair range, i.e., if the curve fit was developed between 14% and 18% and the calculated IRM is 13.9%, the calculation is invalid.

- In addition, there must be at least one statewide reserve margin point to the left and right of the calculated tan 45 point
- Ensure the calculated IRM and corresponding MLCR do not violate the 0.1 LOLE criteria.
- Check results to ensure they are consistent with visual inspection methodology used in past years studies.

This approach identifies the quadratic curve functions with highest R^2 correlations as the basis for the Tan 45 calculation. The final IRM is obtained by averaging the Tan 45 IRM points of the NYC and LI curves. The Tan 45 points are determined by solving for the first derivatives of each of the "best fit" quadratic functions as a slope of -1. Lastly, the resulting MLCR values are identified.

A.3 Base Case Modeling Assumptions

A.3.1 Load Model

Table A-3 Load Model

Parameter	2014 Study Assumption	2015 Study Assumption	Explanation	
Peak Load	October 1 , 2013 forecast NYCA: 33,655 MW NYC: 11,740 MW Long Island 5,461 MW Multiple Load Shapes	October 1 , 2014 forecast NYCA: 33,587 MW NYC: 11,990 MW LI: 5,522 MW GHIJ: 16,387 Multiple Load Shapes	Forecast based on examination of 2014 weather normalized peaks. Top three external Area peak days aligned with NYCA Using new feature of the	
Load Shape Model	Model using years 2002, 2006, and 2007	Model using years 2002, 2006 and 2007	MARS Program	
Load Uncertainty Model	Statewide and zonal model updated to reflect current data	Statewide and zonal model updated to reflect current data	Based on collected data and input from LIPA, Con Ed, and NYISO. Method and values accepted by LFTF	

(1) Peak Load Forecast Methodology

The procedure for preparing the IRM forecast is very similar to that detailed in the NYISO Load Forecasting Manual for the ICAP forecast. The NYISO's Load Forecasting Task Force had two meetings in September 2014 to review analyses prepared by the NYISO and Transmission Owners of the weather response during the summer. Regional Load Growth Factors

(RLGFs) for 2015 were updated by each Transmission Owner based on projections provided to the LFTF in August 2014 by Moody's Analytics. The 2015 forecast was produced by applying the RLGFs to each Transmission Owner's weather-normalized peak for the summer of 2014.

The results of the analysis are shown in Table A-4. The 2014 peak forecast was 33,666 MW. The actual peak of 29,741 MW (Col. 2) occurred on Tuesday, September 2, 2014. After accounting for the impacts of weather and the demand response, the weather-adjusted peak load was determined to be 33,314 MW (Col. 6), 353 MW (1.1%) below the forecast. The Regional Load Growth Factors are shown in column 9. The 2015 forecast for the NYCA is 33,587 MW (Col. 10).

The LFTF recommended this forecast to the NYSRC for its use in the 2015 IRM study, which was approved by ICS.

Table A-4 2015 Final NYCA Peak Load Forecast

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Transmission District	2014 Actual MW	2014 Estimated SCR & Muni Self- Gen	SCR/EDRP Estimate MW	Weather Adjustment MW	2014 Weather Normalized MW	Regional Load Growth Factors	2015 IRM Final Forecast
Central Hudson	1,000	0	0	85	1,085	1.0027	1,088
Con Ed	12,150	0	0	1,300	13,450	1.0130	13,625
LIPA	5,035	25	0	357	5,417	1.0058	5,448
NGrid	6,286	25	0	864	7,175	1.0035	7,200
NYPA	313	0	0	27	340	1.0000	340
NYSEG	2,738	-13	0	442	3,167	1.0050	3,183
O&R	960	0	0	150	1,110	1.0090	1,120
RG&E	1,259	0	0	311	1,570	1.0080	1,583
Grand Total	29,741	37	0	3,536	33,314	1.0082	33,587

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Locality	2014 Actual MW	2014 Estimated SCR & Muni Self- Gen	SCR/EDRP Estimate MW	Weather Adjustment MW	2014 Weather Normalized MW	Regional Load Growth Factors	2015 IRM Final Forecast
Zone J - NYC	10,574	0	0	1,262	11,836	1.0130	11,990
Zone K - LI	5,055	25	0	410	5,490	1.0058	5,522
Zone GHIJ	14,479	0	0	1,716	16,195	1.0118	16,387

(2) Zonal Load Forecast Uncertainty

For 2015, updated models were provided by Con-Ed and LIPA for Zones H&I, J and K. The NYISO developed models for Zones A through G and reviewed the models for the other zones. The results of these models are presented in Table A-5. Each row represents the probability that a given range of load levels will occur, on a per-unit basis, by zone. These results are presented graphically in Figure A-2. The results for Zone K are representative of observed conditions in 2013 for Bins 1 through 5, and observed conditions in 2011 (which had much hotter weather) for Bins 6 and 7. LIPA's analysis has shown that the per unit loads in Zone K have less variability at very high temperatures, (i.e., a smaller increase in load as temperature increases), than at lower temperatures.

2015 Load Forecast Uncertainty Models							
Bin No	Probability	A - F	F&G	H & I	Zone J	Zone K	
1	0.62%	83.99%	79.97%	79.92%	85.43%	78.74%	
2	6.06%	88.92%	86.70%	85.98%	90.02%	83.96%	
3	24.17%	94.34%	93.47%	91.97%	94.40%	91.98%	
4	38.30%	100.00%	100.00%	97.68%	98.42%	100.00%	
5	24.17%	105.59%	106.02%	102.91%	101.92%	108.02%	
6	6.06%	110.73%	111.24%	107.46%	104.75%	111.23%	
7	0.62%	114.94%	115.39%	111.13%	106.76%	114.00%	

Table A-5 2015 Load Forecast Uncertainty Models

Figure A-2 LFU Distributions

The Consolidated Edison models for Zones H, I & J are based on a peak demand with a 1-in-3 probability of occurrence (67th percentile). All other zones are designed at a 1-in-2 probability of occurrence of the peak demand (50th percentile). The methodology and results for determining the 2015 LFU models have been reviewed by the NYISO Load Forecasting Task Force.

(3) Zonal Load Shape Models for Load Bins

Beginning with the 2014 IRM Study, multiple load shapes were used in the load forecast uncertainty bins. Three historic years were selected from those available, as discussed in the NYISO's 2013 report, 'Modeling Multiple Load Shapes in Resource Adequacy Studies'. The year 2007 was assigned to the first five bins (from cumulative probability 0% to 93.32%). The year 2002 was assigned to the next highest bin, with a probability of 6.06%. The year 2006 was assigned to the highest bin, with a probability of 0.62%. The three load shapes for the NYCA as a whole are shown on a per-unit basis for the highest one hundred hours in Figure A-3. The year

2007 represents the load duration pattern of a typical year. The year 2002 represents the load duration pattern of many hours at high load levels. The year 2006 represents the load duration pattern of a heat wave, with a small number of hours at high load levels followed by a sharper decrease in per-unit values than the other two profiles. See 2014 IRM Report Appendix F for more details.

With GE-MARS version 3.18, the logic to calculate the daily LOLE index was enhanced. Previously, the index was calculated using the base load shape's daily peak hours for all bins. The enhanced version (3.18) calculates the LOLE index using the daily peak hour for each load shape in each bin. This is the GE-MARS default setting.

Figure A-3 Per Unit Load Shapes

A.3.2 Capacity Model

The capacity model includes all NYCA generating units, including new and planned units, as well as units that are physically outside New York State, that have met specific criteria to offer capacity in the New York Control Area. The 2014 Load and Capacity Data Report is the primary data source for these resources. Table A-6 provides a summary of the capacity resource assumptions in the 2015 IRM study.

Table A-6 Capacity Resources

Parameter	2014 Study Assumption	2015 Study Assumption	Explanation
Generating Unit Capacities	2013 Gold Book values. Use min (DMNC vs. CRIS) capacity value	2014 Gold Book values. Use min (DMNC vs. CRIS) capacity value	2014 Gold Book publication
Planned Generator Units	76.9 MW of capacity was repowered or returned to service	743.0 MW of new non- wind resources	Retired units returning to service
Wind Resources	Wind Capacity – 1366.6 MWs	Wind Capacity - 1457.1 MWs. A new 88.5 MW unit came on line.	Total Wind Modeled
Wind Shape	Actual hourly plant output of the 2012 calendar year. Summer Peak Hour availability of 17%	Actual hourly plant output of the 2013 calendar year. Summer Peak Hour availability of 14%	Production data from 2013
Solar Resources	Solar Capacity of 31.5 MW plus 12.5 MW of new units with a summer capacity factor of 65%.	31.5 MW of solar modeled per 2013 production data summer capacity factor of 47.3%.	Summer Peak capacity factor based on 2013 hourly production data June 1 – Aug 31, hours HB14 – HB18
Retirements and Mothballed units	164 MW retirements reported	111.7 MW retirements or mothballs	Policy 5 guidelines on retirement or mothball disposition in IRM studies
Forced Outage Rates	Five-year (2008-2012) GADS data for each unit represented. Those units with less than five years – use representative data.	Five-year (2009-2013) GADS data for each unit represented. Those units with less than five years – use representative data.	Transition Rates representing the Equivalent Forced Outage Rates (EFORd) during demand periods over the most recent five-year period (2009-2013)

Parameter	2014 Study Assumption	2015 Study Assumption	Explanation
	Based on schedules received	Based on schedules received	Updated schedules
Planned Outages	by the NYISO and adjusted	by the NYISO and adjusted	
	for history	for history	
	Nominal 50 MWs – divided	Nominal 50 MWs – divided	Review of most
Summer	equally between upstate and	equally between upstate and	recent data
Maintenance	downstate	downstate	
Gas Turbine Ambient Derate	Derate based on provided temperature correction curves.	Derate based on provided temperature correction curves.	Operational history indicates derates in line with manufacturer's curves
Small Hydro Derate	45% derate	45% derate	No Change
Large Hydro	Probabilistic Model based on	Probabilistic Model based on	Historical data
	30 years of operational data	30 years of operational data	provided by NYPA

(1) Generating Unit Capacities

The capacity rating for each thermal generating unit is based on its Dependable Maximum Net Capability (DMNC). The source of DMNC ratings are seasonal tests required by procedures in the NYISO Installed Capacity Manual. Additionally, each generating resource has an associated capacity CRIS (Capacity Resource Interconnection Service) value. When the associated CRIS value is less than the DMNC rating, the CRIS value is modeled.

Wind units are rated at their nameplate, or full rated value, in the model. The 2014 NYCA Load and Capacity Report, issued by the NYISO, is the source of those generating units and their ratings included on the capacity model. The following units are being returned to service:

Ravenswood GT 3-4	Zone J	31.2 MW
Danskammer Units 1-4	Zone G	493.6 MW
Binghamton CoGen	Zone C	41.2 MW
Astoria 2	Zone J	177.0 MW

(2) Planned Generator Units

There were no new planned generator units scheduled to come on-line during the IRM 2015 study period.

(3) <u>Wind Modeling</u>

Wind generators are modeled as hourly load modifiers. The output of each unit varies between 0 MW and the nameplate value based on 2013 production data. Characteristics of this data indicate a capacity factor of approximately 14% during the summer peak hours. A total of 1457.1 MW of installed capacity associated with wind generators is included in this study.

Facility Name	Zone	Connecting Transmission Owner	NYISO Interconnection Study Queue Project Number	Projected/ Actual In-Service Date	New Wind Capacity	Toal Wind Capacity	Total Wind Capacity for 2015 IRM (MW)
Existing Units							
Altona Wind Power	D	NYPA	174	2008 Sept		97.5	97.5
Bliss Wind Power	A	Village of Arcade	173	2008 May		100.5	100.5
Canandaigua Wind Power	С	NYSEG	135&199	2008 Jun		125.0	125.0
Chateaugay Wind Power	D	NYPA	214	2008 Sept		106.5	106.5
Clinton Wind Power	D	NYPA	172 & 211	2008 May		100.5	100.5
Ellenburg Windpark	D	NYPA	175	2008 May		81.0	81.0
Erie Wind*	A	National Grid	N/A	2012 Feb		15.0	0.0
Fenner Wind Farm*	С	NYSEG	N/A	2001 Dec		30.0	0.0
Hardscrabble Wind	E	National Grid	156	2011 Sept		74.0	74.0
High Sheldon Wind Farm	С	NYSEG	144	2009 Feb		112.5	112.5
Howard Wind	С	NYSEG	182	2011 Dec		57.4	57.4
Madison Wind Power	E	NYSEG	N/A	2000 Sept		11.5	11.5
Maple Ridge 1	E	National Grid	171	2006 Feb		231.0	231.0
Maple Ridge 2	E	National Grid	171	2006 Feb		90.7	90.7
Marble River Wind Farm 1 and 2*	D	NYPA	161 & 171	2012 Oct		215.0	0.0
Munnsville	E	NYSEG	127A	2007 Aug		34.5	34.5
Steel Wind	A	National Grid	N/A	2007 Jan		20.0	20.0
Stony Creek (Orangeville)	С	NYSEG	263	2013 Dec	88.5	88.5	88.5
Western NY Wind Power*	В	RG&E	N/A	2000 Oct		6.6	0.0
Wethersfield Wind Power	С	NYSEG	177	2008 Dec		126.0	126.0
Proposed Units							
Marsh Hill Wind Farm	С	NYSEG	378	2014- Oct	16.2	16.2	0.0
TOTAL CAPACITY - ALL CATEGORIES				• •	104.7	1,739.9	1,457.1
* Lessor of DMNC or CRIS right	۹						

Table A-7 Wind Generation

(4) Solar Modeling

Solar generators are modeled as hourly load modifiers. The output of each unit varies between 0 MW and the nameplate MW value based on 2013 production data. Characteristics of this data indicate an overall 47% capacity factor during the summer peak hours. A total of 31.5 MW of solar capacity was modeled in Zone K.

(5) <u>Retirements</u>

There were two unit retirements (111.7 MW) scheduled during the IRM study period as reported to the NYISO.

- Dunkirk 2 75 MW in Zone A
- Ravenswood GT 3-3 36.7 MW in Zone J

(6) Forced Outages

Performance data for thermal generating units in the model includes forced and partial outages, which are modeled by inputting a multi-state outage model that is representative of the "equivalent demand forced outage rate" (EFORd) for each unit represented. Generation owners provide outage data to the NYISO using Generating Availability Data System (GADS) data in accordance with the NYISO Installed Capacity Manual. The NYSRC is continuing to use a five-year historical period for the 2015 IRM Study.

Figure A-4 shows the trend of EFORd for various regions within NYCA.

Figure A-5 shows a rolling 5 year average of the same data.

Figures A-6 and A-7 show the availability trends of the NYCA broken out by fuel type.

The multi-state model for each unit is derived from five years of historic events if it is available. For units with less than five years of historic events, the available years of event data for the unit is used if it appears to be reasonable. For the remaining years, the unit NERC class-average data is used.

The unit forced outage states for the majority of the NYCA units were obtained from the five-year NERC-GADS outage data collected by the NYISO for the years 2009 through 2013. This hourly data represents the availability of the units for all hours. From this, full and partial outage states and the frequency of occurrence were calculated and put in the required format for input to the GE-MARS program. Where the NYISO had suspect data for a unit that could not be resolved prior to this study, NERC class average data was substituted for the year(s) of suspect data.

Figures A-8 and A-9 show the unit availabilities of the entire NERC fleet on an annual and 5-year historical basis.

Figure A-4 NYCA Annual Zonal EFORds

Figure A-5 Five-Year Zonal EFORds

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Figure A-6 NYCA Annual Availability by Fuel

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Figure A-7 NYCA Five-Year Availability by Fuel

Figure A-8 NERC Annual Availability by Fuel

NERC EQUIVALENT AVAILABILITY BASED ON NERC-GADS DATA FROM 1982 – 2013 ANNUAL WEIGHTED AVERAGES FOR NUCLEAR, COAL, OIL, GAS, AND COMBUSTION TURBINES

Figure A-9 NERC Five-Year Availability by Fuel

(7) Outages and Summer Maintenance

A second performance parameter to be modeled for each unit is scheduled maintenance. This parameter includes both planned and maintenance outage components. The planned outage component is obtained from the generator owners, and where necessary, extended so that the scheduled maintenance period equals the historic average using the same five year period used to determine EFORd averages. Figure A-10 provides a graph of scheduled outage trends over the 1992 through 2012 period for the NYCA generators.

Typically, generator owners do not schedule maintenance during the summer peak period. However, it is highly probable that some units will need to schedule maintenance during this period. Each year, the previous five year period is reviewed to determine the scheduled maintenance MW during the previous peak periods. An assumption is determined as to how much to model in the current study. For the 2015 IRM Study, a nominal 50 MW of summer maintenance is modeled. The amount is equally divided between upstate and downstate. Figure A-11 shows the weekly scheduled maintenance for the 2015 IRM Study compared to this study.

(8) Gas Turbine Ambient Derate

Operation of combustion turbine units at temperatures above DMNC test temperature results in reduction in output. These reductions in *g*as turbine and combined cycle capacity output are captured in the GE-MARS model using deratings based on ambient temperature correction curves. Based on its review of historical 2006 and 2007 data, the NYISO staff has concluded that the existing combined cycle temperature correction curves are still valid and appropriate. These temperature corrections curves, provided by the Market Monitoring Unit of the NYISO, show unit output versus ambient temperature conditions over a range starting at 60 degrees F to over 100 degrees F. Because generating units are required to report their DMNC output at peak or "design" conditions (an average of temperatures obtained at the time of the transmission district previous four like capability period load peaks), the temperature correction for the combustion turbine units is derived for and applied to temperatures above transmission district peak loads. A NYISO report on this analysis, *Adjusting for the Overstatement of the Availability of the Combustion Turbine Capacity in Resource Adequacy Studies*, dated October 22, 2007, can be found on the NYISO web site.

The derate does not affect all units because there are units capable of generating up to 88 or 94 MW but are limited by permit to 79.9 MW, so these units are not impacted by the temperature derating in obtaining an output of 79.9 MW. About one quarter of the existing 3,700 MW of simple cycle Combustion Turbines fall into this category. The accuracy of temperature corrections for all combustion turbines will continue to be evaluated as operational data becomes available.

(9) Hydro Derates

The Niagara and St. Lawrence hydroelectric projects are modeled with a probability capacity model based on historic water flows and unit performance. Run of river hydro facilities are simulated in GE-MARS with availability reduced using a monthly derate with the highest derated values of 45% occurring during the summer months of July and August. These monthly derates are derived using recent historic hydro water conditions.

Figure A-10 Planned and Maintenance Outage Rates

Figure A-11 Scheduled Maintenance

A.3.3 Transmission System Model

A detailed transmission system model is represented in the GE-MARS topology. The transmission system topology, which includes eleven NYCA zones and four Outside World Areas, along with transfer limits, is shown in Figure A-12. The transfer limits employed for the 2015 IRM Study were developed from emergency transfer limit analysis included in various studies performed by the NYISO, and from input from Transmission Owners and neighboring regions. The transfer limits are further refined by additional assessments conducted specifically for this cycle of the development of the topology. The assumptions for the transmission model included in the 2015 IRM study are listed in Table A-8.

Forced transmission outages are included in the GE-MARS model for the underground cables that connect New York City and Long Island to surrounding zones. The GE-MARS

model uses transition rates between operating states for each interface, which are calculated based on the probability of occurrence from the failure rate and the time to repair. Transition rates into the different operating states for each interface are calculated based on the circuits comprising each interface, which includes failure rates and repair times for the individual cables, and for any transformer and/or phase angle regulator associated with that particular cable.

The TOs provided updated transition rates.

The interface transfer limits were updated for the 2015 IRM Study model based on transfer limit analysis performed for the 2014 Reliability Needs Assessment

Parameter	2014 Model Assumptions	2015 Model Assumptions Recommended	Basis for Recommendation
Interface Limits	All changes reviewed and commented on by TPAS	All changes reviewed and commented on by TPAS	Based on 2014 Operating Study, 2014 Operations Engineering Voltage Studies, 2014 Comprehensive Planning Process, and additional analysis including interregional planning initiatives
Cable Forced Outage Rates	All existing Cable EFORs updated for NYC and LI to reflect most recent five-year history	All existing Cable EFORs will be updated for NYC and LI to reflect most recent five-year history	Based on TO analysis
New UDRs	No new UDRs	No new UDR projects	Existing UDR elections are made by August 1 st and will be incorporated into the model

Table A-8 Transmission System Model

Figure A-12 shows the system transmission representation for this year's study. Figure A-13 shows a more detailed representation of the interconnections surrounding the PJM/NYCA downstate interface. Finally, Figure A-14 shows the 13 zone New England Representation in more detail.

As can be seen from the figures, the changes made to interface limits are as follows:

	2014		2015		Delta	
Interface	Forward	Reverse	Forward	Reverse	Forward	Reverse
Dysinger						
East	2650		2200/1575/950		-450	
West						
Central	1300		1300			
Volney East	5675		5650		-25	
Moses						
South	2650		2650			
Central East	3250		3250			
Marcy South	1700	1600	1700	1600		
UP_CONED	5150		5210		60	
Millwood	8450		8450			
Dunwoodie	4350		4400		50	
Zone F to G	3475		3475			
LILCO	175	510	235	510	60	
I to K	1290	530	1290	530		
Zone A						
Group	N/A		2300/1550/775			
A Line + VFT	815/700/550/200		815/700/500/200		0/0/-50/0	
PJM-SENY						
Group	2000		3075		1075*	

Table A-9 Interface Limits Updates

*1075 MW includes 660 MW from HTP, additional 15 MW from VFT, and 400 MW for other system improvements.

Transmission security analysis using the power flow system model identified the need for a new interface grouping (Zone A group) to set dynamic interface ratings based on unit availabilities in Zone A.

The Dysinger East transfer limit decreased compared to the transfer limit used in the 2014 IRM. The thermal limitations on the 230 kV transmission path between Packard and Gardenville in Zone A became more constraining than the voltage limitations.

PJM-SENY group limit is imposed to reflect internal constraints in both PJM and NY systems, and was updated to reflect facilities going into service in PJM to support firm withdrawal rights and load deliverability. To ascertain potential tie benefits to NY, PJM RTEP and Load Deliverability Studies were reviewed and discussed with PJM.
Figure A-12 2015 Transmission Representation

Transmission System Representation for Year 2015 - Summer Emergency Ratings (MW)

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Page 36

Figure A-13 PJM – SENY Interface Model

Transmission System Representation for Year 2015 - Summer Emergency Ratings (MW)

(PJM East to RECO) + (PJM East to J2) + (PJM East to J3) + (PJM East to J4) = 3075 MW

Page 37

Note: (1) The Neptune and Hudson Transmission Partners lines do not provide emergency assistance to PJM. (2) PJM-SENY group has been redefined as shown above, and the simultaneous limit increased to 3075 MW; see Table A-9.

Figure A-14 Full New England Representation

Transmission System Representation for Year 2015 - Summer Emergency Ratings (MW)

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Page 38

A.3.4 External Area Representations

NYCA reliability largely depends on emergency assistance from its interconnected Control Area neighbors (New England, Ontario, Quebec and PJM) based on reserve sharing agreements with these Outside World Areas. Load and capacity models of these Areas are therefore represented in the GE-MARS analyses with data received directly from the Areas and through NPCC sources.

The primary consideration for developing the final load and capacity models for the Outside World Areas is to avoid over-dependence on the Outside World Areas for emergency capacity support. For this purpose, a rule is applied whereby either an Outside World Area's LOLE cannot be lower than 0.100 days/year LOLE, or its isolated LOLE cannot be lower than that of the NYCA. In other words, the neighboring Areas are assumed to be equally or less reliable than NYCA. Another consideration for developing models for the Outside World Areas is to recognize internal transmission constraints within the Outside World Areas that may limit emergency assistance to the NYCA. This recognition is considered implicitly for those Areas that have not supplied internal transmission constraint data. Additionally, EOPs are removed from the Outside World Area models.

In order to avoid over-dependence from emergency assistance, the three highest summer load peak days of the Outside World Areas' are modeled to match the same load sequence as NYCA.

For this study, both New England and PJM continue to be represented as multi-area models, based on data provided by these Control Areas. Ontario and Quebec are represented as single area models. The Control Areas provide their load forecast uncertainty models and the three highest summer load peak days of the Areas are modeled to match the same load sequence as NYCA.

The load forecast uncertainty model for the outside world model was supplied from the external Control Areas.

Modeling of the neighboring Control Areas in the base case in accordance with Policy 5-8 is as follows:

Parameter	2014 Study Assumption	2015 Study Assumption	Explanation
Capacity Purchases	Grandfathered amounts: PJM – 1080 MW HQ – 1090 MW All contracts model as equivalent contracts	Grandfathered amounts: PJM – 1080 MW HQ – 1090 MW All contracts model as equivalent contracts	Grandfathered Rights, ETCNL, and other FERC identified rights
Capacity Sales	Long term firm sales of 279 MW	Long term firm sales of 283.5 MW	These are long term federally monitored contracts.
External Area Modeling	Single Area representations for Ontario and Quebec. Four zones modeled for PJM. Thirteen zones modeled for New England	Single Area representations for Ontario and Quebec. Four zones modeled for PJM. Include PJM Annual & Extended Demand Response Program MW Thirteen zones modeled for New England	The load and capacity data is provided by the neighboring Areas. This updated data may then be adjusted as described in Policy 5
Reserve Sharing	All NPCC Control Areas have indicated that they will share reserves equally among all	All NPCC Control Areas have indicated that they will share reserves equally among all	Per NPCC CP-8 working group assumption

Table A-10 External Area Representations

Table A-11 Outside World Reserve Margins

Area	2014 Study Reserve Margin	2015 Study Reserve Margin	2014 Study LOLE (Days/Year)	2015 Study LOLE (Days/Year)
Quebec	38.3%*	40.9%*	0.103	0.105
Ontario	10.8%	6.2%	0.104	0.104
PJM-Mid-Atlantic	14.4%	15.0%	0.292	0.234
New England	10.3%	13.8%	0.115	0.106

*This is the summer margin.

Table A-11, above, shows the final reserve margins and LOLEs for the Control Areas external to NYCA.

A.3.5 Emergency Operating Procedures (EOPs)

There are many steps that the system operator can take in an emergency to avoid disconnecting load. EOP steps 2 through 10 listed in Table A-13 were provided by the NYISO based on operator experience. Table A-12 lists the assumptions modeled.

The values in Table A-12 are based on a NYISO forecast that incorporates 2014 operating results. This forecast is applied against a 2015 peak load forecast of 33,587 MW. The table shows the most likely order that these steps will be initiated. The actual order will depend on the type of the emergency. The amount of assistance that is provided by EOPs related to load, such as voltage reduction, will vary with the load level.

Parameter	2014 Study Assumption	2015 Study Assumption	Explanation
Special Case Resources	July 2014 – 1195 MW based on registrations and modeled as 758 MW. Monthly variation based on historical experience (no limit on the number of calls)	July 2015 – 1132.4 MW based on registrations and modeled as 742.1 MW. Monthly variation based on historical experience (no limit on the number of calls)	Those sold for the program, discounted to historic availability.
EDRP Resources	July 2014 – 93.9 MW registered; modeled as 12.8 MW in July and Aug and proportional to monthly peak load in other months. Limit to 5 calls per month	July 2015 – 86 MW registered; modeled as 14 MW in July and Aug and proportional to monthly peak load in other months. Limit to 5 calls per month	Those registered for the program, discounted to historic availability. Summer values calculated from July 2013 registrations.
EOP Procedures	721 MW of non-SCR/EDRP MWs	713 MW of non-SCR/EDRP MWs	Based on TO information, measured data, and NYISO forecasts

Table A-12 Assumptions for Emergency Operating Procedures

Parameter	Procedure	Effect	MW Value		
1	Special Case Resources (SCRs)	Load relief	1132 MW Enrolled/742 MW modeled		
2	Emergency Demand Response Programs (EDRPs).	Load relief	86 MW Enrolled/14 MW Modeled		
3	5% manual voltage reduction***	Load relief	62 MW		
4	Thirty-minute reserve to zero	Allow operating reserve to decrease to largest unit capacity (10-minute reserve)	655 MW		
5	5% remote voltage reduction***	Load relief	441 MW		
6	Voluntary industrial curtailment***	Load relief	122 MW		
7	General public appeals***	Load relief	88 MW		
8	Emergency Purchases	Load relief	Varies		
9	Ten-minute reserve to zero	Allow 10-minute reserve to decrease to zero	1310 MW		
10	Customer disconnections	Load relief	As needed		
* The SCR's are modeled as monthly values. The value for July is 1132 4 MW					

Table A-13 Emergency Operating Procedures Values

** The EDRPs are modeled as 86 MW discounted to 14 MW in July and August and further discounted in other months. They are limited to 5 calls a month.

*** These EOPs are modeled in the program as a percentage of the hourly peak. The associated MW value is based on a forecast 2015 peak load of 33,586 MW.

A.3.6 Location Capacity Requirements

The GE-MARS model used in the IRM study provides an assessment of the adequacy of the NYCA transmission system to deliver assistance from one Zone to another for meeting load requirements. Previous studies have identified transmission constraints into certain Zones that could impact the LOLE of these Zones, as well as the statewide LOLE. To minimize these potential LOLE impacts, these Zones require a minimum portion of their NYCA ICAP requirement, i.e., locational ICAP, which shall be electrically located within the Zone in order to ensure that sufficient energy and capacity are available in that Zone and that NYSRC Reliability Rules are met. Locational ICAP requirements are currently applicable to two transmission-constrained Zones, New York City and Long Island, and are normally expressed as a percentage of each Zone's annual peak load.

These locational ICAP requirements, recognized by NYSRC Reliability Rule A-R2 and monitored by the NYISO, supplement the statewide IRM requirement. This report using the unified methodology determines the minimum locational requirements for different levels of installed reserve. The NYSRC chooses the IRM to be used for the coming year and the NYISO chooses the final value of the locational requirements to be met by the LSEs.

A.3.7 Special Case Resources and Emergency Demand Response Program

Special Case Resources (SCRs) are loads capable of being interrupted, and distributed generators, rated at 100 kW or higher, that are not directly telemetered. SCRs are ICAP resources that only provide energy/load curtailment when activated in accordance with the NYISO Emergency Operating Manual. Performance factors for SCRs are shown below:

Zones	Forecast SCRs (MW)	Overall Performance (%)
A - E	528.2	84.7
F - I	160.1	81.7
J	374.0	64.9
К	70.1	67.2

Table A-14 SCR Performance

The Emergency Demand Response Program (EDRP) is a separate program that allows registered interruptible loads and standby generators to participate on a voluntary basis and be paid for their ability to restore operating reserves.

GE-MARS models SCRs and EDRPs as EOP steps and will activate these steps to minimize the probability of customer load disconnection. Both GE-MARS and NYISO operations only activate EOPs in zones where they are capable of being delivered.

SCRs are modeled with monthly values. For the month of July, the value is 1132.4 MW. This value is the result of applying historic growth rates to the latest participation numbers.

EDRPs are modeled as a 14 MW EOP step in July and August (and they are also further discounted in other months) with a limit of five calls per month. This EOP is discounted from the forecast registered amount of 86 MW based on actual experience.

A.4 MARS Data Scrub

A.4.1 GE Data Scrub

General Electric (GE) was asked to review the input data for errors. GE has developed a program called "Data Scrub" which processes the input files and flags data that appears to be out of the ordinary. For example, it can identify a unit with a forced outage rate significantly higher than all the others in that size and type category. If something is found, the NYISO reviews the data and either confirms that it is correct as is, or institutes a correction. The results of this data scrub are shown in Table A-15.

Item	Description	Disposition	Data Change	Effect on IRM
	Generation: Zonal grouping of Rup of	Run of River Hydro group MW were		
1	River Hydro off by 7 MW	determined at the individual unit level	No	No
		and then summed.		
		Data is available in the Gold Book,		
2	Generation: Unable to verify 5 units	however the data has since been	Ves	No
2	'lesser' of capacity.	updated and will be applied to the final	103	NO
		2015-2016 IRM Study base case.		
	Generation: Thirteen Units have			
3	EFORds 10% higher or lower than last	Confirmed by NYISO staff.	No	No
	year.			
1	Contracts: Large Hydro derates of	This is the correct value for 2015	No	No
4	only 281.8 MW		110	
	EOPS: Validated 5% voltage	This data was updated to the correct		
5	reductions. Curtailments are at 116	value of 122 MW in the revised	Yes	No
	instead of 122 MW.	preliminary base case.		
		Values on the topology map are for when		
6	Transfer Limits: Highest achievable	Dunkirk 3 and 4 are available. They are	No	No
0	transfer for Dysinger East is 2200 MW	retired in our model. Will update	NO	NO
		topology map to show 2015 only.		
	Transfer Limits: Highest achievable	Values on the topology map are for when		
-	transfer for Zone A East grouning is	Dunkirk 3 and 4 are available. They are	No	No
/		retired in our model. Will update	NO	
	2300 10100.	topology map to show 2015 only.		
0	Transfer Limits: Total East grouping	Removed. No longer needed as it was	No	No
8	is missing.	never binding.	NU	NU

Table A-15 GE MARS Data Scrub

A.4.2 NYISO Data Scrub

The NYISO also performs a review of the MARS data independently from GE. Table A-16 shows the results of this review.

Item	Description	Disposition	Data Change	Effect on IRM
1	Generation: Units RIOHYD and SWBR2 are incorrectly grouped with unit HYDRC1.	Corrected in the parametric study cases before the preliminary base case.	Yes	Yes
2	Generation: Units JMTW05 and JMTW06 are incorrectly grouped as unit JTWNST.	Corrected in the parametric study cases before the preliminary base case.	Yes	No
3	Transition Rate: Abnormal transition rate and EFORd for unit BWLNS2 due to incorrect DMNC value reported in GADS	Corrected in the parametric study cases before the preliminary base case.	Yes	Yes
4	EOPS: Validated 5% voltage reductions. Curtailments are at 116 instead of 122 MW.	This data was updated to the correct value of 122 MW in the revised preliminary base case.	Yes	No

Table A-16 NYISO MARS Data Scrub

A.4.3 Transmission Owner Data Scrub

In addition to the above reviews, two transmission owners scrub the data and assumptions from a masked database provided. Table A-17 shows these results.

Item	Description	Disposition	Data Change	Effect on IRM
1	EOPS: Validated 5% voltage reductions. Curtailments are at 116	This data was updated to the correct value of 122 MW in the revised	Yes	No
2	Transfer Limits: ISONE limits on various Areas do not match the topology diagram.	Transfer limits will be updated for the Final IRM Base Case. Policy 5 adjustments negate any effect of these small changes.	Yes	No
3	Transfer Limits: HQ-CMA Limit is 0 for winter and 1200 for summer.	Data is correct per NPCC CP-8 MARS model.	No	No
4	Generation: ID-502 in ISONE listed in ISONE CELT as 575.5 MW, but modeled as 560 MW.	MARS data for ISONE comes from NPCC CP-8 model and has been updated since publication of the ISONE CELT Report.	No	No
5	Transition Rate: Dunwoodie South cable entry typo at Row 2, Column 6	Corrected and results not affected.	Yes	No

Table A-17 Transmission Owner Data Scrub

Item	Description	Disposition	Data Change	Effect on IRM
6	Transfer Limits: Neptune Interface limit positive direction flow is 0 MW instead of 660 MW.	PJM does not allow injection from LIPA at PJM East.	No	No
7	Transition Rate: Cable transition was revised from data submitted by LIPA	The original transition rate data submitted did not function in MARS. The revised data, while functional, changed the final state hours to a non-zero value. The NYISO's revision corrected this and did not impact the EFORd value.	No	No

Appendix B

Details of Study Results

B. Details for Study Results

B.1 Sensitivity Results

Table B-1 summarizes the 2015 Capability Year IRM requirements under a range of assumption changes from those used for the base case. The base case utilized the computer simulation, reliability model, and assumptions described in Appendix A. The sensitivity cases determined the extent of how the base case required IRM would change for assumption modifications, either one at a time, or in combination. The methodology used to conduct the sensitivity cases was to start with the preliminary base case 17.4% IRM results then add or remove capacity from all zones in NYCA until the NYCA LOLE approached criteria. The values in Table B-1 are the sensitivity results adjusted to the 17.3% final base.

Table B-1 Sensitivity Case Results

Case	Description	IRM (%)	NYC (%)	LI (%)	
0	Final Base Case	17.3	83.4	103.7	
	This is the Base Case technical results derived from knee of the IRM-L are performed off of this run	CR curve. Al	l other sensit	ivity cases	
1	NYCA Isolated	26.0	89.6	111.6	
	This case examines a scenario where the NYCA system is isolated and from neighboring control areas (New England, Ontario, Quebec, and "Base Case Results – Interconnection Support during Emergencies" sectors	d receives no PJM). UDRs tion of the re	emergency are allowed port.	assistance . See the	
2	No Internal NYCA Transmission Constraints (Free Flow System)	14.7	NA	NA	
	This case represents the "Free-Flow" NYCA case where internal transmission constraints are eliminated and measures the impact of transmission constraints on statewide IRM requirements. See the "Base Case – NYCA Transmission Constraints" section of the report.				
3	No Load Forecast Uncertainty	7.3	76.3	94.6	
	This scenario represents "perfect vision" for 2014 peak loads, assum NYCA have a 100% probability of occurring. The results of this evalua weather on IRM requirements.	ing that the ation help to	forecast peal quantify the	c loads for effects of	
4	Remove all wind generation	13.6	83.4	103.7	
	Freeze J & K at base levels and adjust capacity in the upstate zones. T generation has on the IRM requirement.	his shows th	e impact tha	t the wind	
5	No SCRs or EDRPs	16.0	81.8	104.3	
	Shows the impact of SCRs and EDRPs on IRM.				
6	New MARS peak logic feature turned off	16.6	82.9	103.1	
	Reverts to using the base shape's daily peak hours for all the LFU bin shapes				
7	Use the 2002 load shape without multiple load shapes in the model	18.4	84.2	104.7	
	One load shape is used and that shape is the 2002 hourly shape.				
8	No PJM DR Programs represented	18.8	84.2	104.8	

	Shows the IRM if the demand response resources are removed.						
9	Add Limited PJM DR to lower the PJM LOLE to approximately 0.15 days/year	16.1	82.6	102.6			
	The base case already has' summer' and 'extended' demand resources. This case adds those resources labeled as 'limited' until the PJM LOLE drops to 0.15 days/year. This required 1783 MW from this pool of resources (over 9,800 available).						
10	Add Limited PJM DR to lower the PJM LOLE to approximately 0.10 days/year	15.1	81.8	101.7			
	The base case already has' summer' and 'extended' demand resources. This case adds those resources labeled as 'limited' until the PJM LOLE drops to 0.10 days/year. This required 2983 MW from this pool of resources (over 9,800 available).						
11	Remove Danskammer Units	17.3	85.4	106.3			
	This sensitivity removes the Danskammer units from service and then replaces the lost capacity in zones G through K.						
12	Retire Indian Point 2 and 3 LOLE from 0.10 to 0.71 days/year						
	Starts with the base case and removes the Indian Point Units. The LOL	Starts with the base case and removes the Indian Point Units. The LOLE is recorded.					

B.1.1 Sensitivity Number 12, the removal of the Indian Point Units 2 and 3, without adding any additional capacity resulted in an LOLE of 0.71.

B.2 Environmental Regulations

Several new environmental regulatory programs became effective in 2014. These state and federal regulatory initiatives cumulatively will require considerable investment and changes in operating methods for New York's existing thermal power plants in order to comply with these new regulatory requirements. The programs assessed here are the following:

- a) NOx RACT Reasonably Available Control Technology
- b) BART Best Available Retrofit Technology for regional haze
- c) MACT Maximum Achievable Control Technology for hazardous air pollutants
- d) CSAPR Cross State Air Pollution Rule
- e) BTA Best Technology Available for cooling water intake structures
- f) RGGI- Regional Greenhouse Gas Initiative

B.2.1 Summary of Environmental Programs

Table B-2 summarizes the impact of the new environmental regulations. Approximately 33,800 MW of nameplate capacity may be affected to some extent by these regulations. Compliance plans are in place for NOx RACT, BART, and RGGI. Reviewing publicly available information from USEPA and USEIA, most generators affected by MATS and MRP have demonstrated operations with emission levels consistent with the new regulations. BTA determinations are the result of extensive studies and negotiations that in most cases have not resulted in decisions requiring conversion to closed cycle cooling systems. These determinations are made on a plant specific schedule. The Indian Point Nuclear Plant BTA determination is the subject of an extensive hearing and Administrative Law Judge determination process that will continue through 2015.

Program	Status	Compliance Deadline	Approximate Nameplate Capacity
NOx RACT	In effect	July 2014	27,100 MW (221 units)
BART	In effect	January 2014	8,400 MW (15 units)
MATS	In effect	April 2015/2016/2017	10,300 MW (23 units)
MRP	In effect	January 2015	1,500 MW (6 units)
CSAPR	Supreme Court validated USEPA rule	TBD	26,300 MW (160 units)
RGGI	In effect	In effect	25,800 MW (154 units)
BTA	In effect	Upon permit Renewal	16,400 MW (34 units)

Table B-2 Summary of Environmental Programs

Using publicly available information from USEPA and USEIA, the NYISO further identified the units that may experience significant operational impacts from the environmental regulations. The summary is provided below and in Table B-3:

- *NOx RACT program*: It appears that compliance with each of the three NOx bubble limitation is achievable.
- BART limits: The Oswego Units #5 and #6 are estimated to be able to start and operate at maximum output for many more days than they have been committed historically. Accordingly, imposing these estimated BART operating limits does not change NYCA LOLE in 2015 RNA.
- MATS/MRP Program: Given the current outlook for the continued attractiveness of natural gas compared to heavy oil, it is anticipated that compliance can be achieved by dual fuel units through the use of natural gas to maintain fuel ratios that are specified in the regulation.
- RGGI: The impact of RGGI may increase the operating cost of all coal units. Should all coal units retire, loss of nearly 1,500 MW in upstate would cause LOLE to exceed 0.1/day in year 2017 or before, and cause reliability violations.

Program	Status	Significant Operational Impacts	Future Operations Potentially Impacted	Capacity (MW)
NOx RACT	July 2014	Three NYC NOx bubbles	Arthur Kill, Astoria Gas Turbines, Astoria, Narrows, Gowanus, Ravenswood	5,300
BART	In effect	Emission caps	Oswego 5 & 6: limited number of days for operations at peak	1,600
MATS/MRP	April 2015/6/7	Oil use limits	Astoria, Ravenswood, Northport, Barrett, Port Jefferson, Bowline, Roseton, Oswego	8,800
CSAPR	Uncertain	Cost increases	Uncertain	
RGGI	In effect	Cost increases up to \$10/MWH	All Coal units	1,450
ВТА	Permit Renewal	Potential retirements or capacity factor limits	Indian Point, Bowline, and Huntley	3,200

Table B-3: Summary of Potentially Significant Operational Impacts due to New Environmental Regulations

B.3 Frequency of Implementing Emergency Operating Procedures

In all cases, it was assumed that the EOPs are implemented as required to meet the 0.1 days/year criterion. For the base case, the study shows that approximately 6.7 remote controlled voltage reductions per year would be implemented to meet the once in 10 years disconnection criterion. The expected frequency for each of the EOPs for the base case is provided in Table B-4.

Step	ЕОР	Expected Implementation (Days/Year)
1	Require SCRs	8.9
2	Require EDRPs	7.1
3	5% manual voltage reduction	6.8
4	30 minute reserve to zero	6.8
5	5% remote controlled voltage reduction	6.7
6	Voluntary load curtailment	4.7
7	Public appeals	3.9
8	Emergency purchases	3.6
9	10 minute reserve to zero	3.5
10	Customer disconnections	0.1

Table B-4 Implementation of EOP steps

Appendix C

ICAP to UCAP Translations

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Page 54

C. ICAP to UCAP Translation

The NYISO administers the capacity requirements to all loads in the NYCA. In 2002, the NYISO adopted the Unforced Capacity (UCAP) methodology for determining system requirements, unit ratings and market settlements. The UCAP methodology uses individual generating unit data for output and availability to determine an expected level of resources that can be considered for system planning, operation and marketing purposes. EFORd is developed from this process for each generating unit and applied to the units Dependable Maximum Net Capability (DMNC) test value to determine the resulting level of UCAP.

Individual unit EFORd factors are taken in aggregate on both a Statewide and Locational basis and used to effectively "translate" the IRM and LCRs previously determined in the GE-MARS Analysis in terms of ICAP, into an equivalent UCAP basis.

Table C-1 summarizes historical values (since 2000) for NYCA capacity parameters including Base Case IRMs, approved IRMs, UCAP requirements, and NYISO Approved LCRs (for NYC, LI and G-J).

Capability Year	Base Case IRM (%)	Final IRM (%)	NYCA Equivalent UCAP Requirement (%)	NYISO Approved NYC LCR (%)	NYISO Approved LI LCR (%)	NYISO Approved G-J LCR (%)
2000	15.5	18.0		80.0	107.0	
2001	17.1	18.0		80.0	98.0	
2002	18.0	18.0		80.0	93.0	
2003	17.5	18.0		80.0	95.0	
2004	17.1	18.0	11.9	80.0	99.0	
2005	17.6	18.0	12.0	80.0	99.0	
2006	18.0	18.0	11.6	80.0	99.0	
2007	16.0	16.5	11.3	80.0	99.0	
2008	15.0	15.0	8.4	80.0	94.0	
2009	16.2	16.5	7.2	80.0	97.5	
2010	17.9	18.0	6.1	80.0	104.5	
2011	15.5	15.5	6.0	81.0	101.5	
2012	16.1	16.0	5.4	83.0	99.0	
2013	17.1	17.0	6.6	86.0	105.0	
2014	17.0	17.0	6.4	85.0	107.0	88.0

Table C-1 Historical NYCA Capacity Parameters

C.1 NYCA and NYC and LI Locational Translations

In the "Installed Capacity" section of the NYISO Web site, the NYISO Staff regularly posts ICAP and UCAP calculations for both the summer and winter Capability Periods. This publicly available information can be found on the NYISO web site.³

Information has been compiled by the NYISO on this site since 2006 and includes complete information through 2013. This information is provided for Locational Areas and for the Transmission District Loads.

The Locational Areas include NYC, LI, G-J and the entire NYCA. Exhibits C-1.1 through C-1.4 summarizes translation of ICAP requirements to UCAP requirements for these Locational Areas. The charts and tables included in these exhibits utilize data from the 2006-2013 capability periods (and limited to "summer" only, for purposes of simplicity).

Importantly, this data reflects the interaction and relationships between the capacity parameters used this study, including Forecast Peak Load, ICAP Requirements, Derating Factors, UCAP Requirements, IRM and LCRs. Since these parameters are so inextricably linked to each other, the graphical representation also helps one more easily visualize the annual changes in capacity requirements.

³ <u>http://icap.nyiso.com/ucap/public/ldf_view_icap_calc_selection.do</u>

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

C.1.1 New York Control Area ICAP to UCAP Translation

Year	Forecast Peak Load (MW)	Installed Capacity Requirement (%)	Derate Factor	ICAP Requirement (MW)	UCAP Requirement (MW)	Effective UCAP (%)
2006	33,295	118.0	0.0543	39,288	37,154	111.6
2007	33,447	116.5	0.0446	38,966	37,228	111.3
2008	33,809	115.0	0.0578	38,880	36,633	108.4
2009	33,930	116.5	0.0801	39,529	36,362	107.2
2010	33,025	118.0	0.1007	38,970	35,045	106.1
2011	32,712	115.5	0.0820	37,783	34,684	106.0
2012	33,295	116.0	0.0918	38,622	35,076	105.4
2013	33,279	117.0	0.0891	38,936	35,467	106.6
2014	33,666	117.0	0.0908	39,389	35,812	106.4

Table C-2 NYCA ICAP to UCAP Translation

C.1.2 New York City ICAP to UCAP Translation

Year	Forecast Peak Load (MW)	Locational Capacity Requirement (%)	Derate Factor	ICAP Requirement (MW)	UCAP Requirement (MW)	Effective UCAP (%)
2006	11,628	80.0	0.0542	9,302	8,798	75.7
2007	11,780	80.0	0.0388	9,424	9,058	76.9
2008	11,964	80.0	0.0690	9,571	8,911	74.5
2009	12,050	80.0	0.0814	9,640	8,855	73.5
2010	11,725	80.0	0.1113	9,380	8,336	71.1
2011	11,514	81.0	0.0530	9,326	8,832	76.7
2012	11,500	83.0	0.0679	9,545	8,897	77.4
2013	11,485	86.0	0.0559	9,877	9,325	81.2
2014	11,783	85.0	0.0544	10,015	9,471	80.4

Table C-3 New York City ICAP to UCAP Translation

C.1.3 Long Island ICAP to UCAP Translation

Year	Forecast Peak Load (MW)	Locational Capacity Requirement (%)	Derate Factor	ICAP Requirement (MW)	UCAP Requirement (MW)	Effective UCAP (%)
2006	5,348	99.0	0.0348	5,295	5,110	95.6
2007	5,422	99.0	0.0580	5,368	5,056	93.3
2008	5,424	94.0	0.0811	5,098	4,685	86.4
2009	5,474	97.5	0.1103	5,337	4,748	86.7
2010	5,368	104.5	0.1049	5,610	5,021	93.5
2011	5,434	101.5	0.0841	5,516	5,052	93.0
2012	5,526	99.0	0.0931	5,470	4,961	89.8
2013	5,515	105.0	0.0684	5,790	5,394	97.8
2014	5,496	107.0	0.0765	5,880	5,431	98.8

Table C-4 Long Island ICAP to UCAP Translation

C.1.4 GHIJ ICAP to UCAP Translation

Year	Forecast Peak Load (MW)	Locational Capacity Requirement (%)	Derate Factor	ICAP Requirement (MW)	UCAP Requirement (MW)	Effective UCAP (%)
2014	16,291	88.0	0.0587	14,336	13,495	82.8

C.2 Transmission Districts ICAP to UCAP Translation

C.2.1 Central Hudson Gas & Electric

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	1,163	1,372	1,297	118.0%	111.6%
2007	1,205	1,404	1,341	116.5%	111.3%
2008	1,214	1,396	1,316	115.0%	108.4%
2009	1,196	1,394	1,282	116.5%	107.2%
2010	1,172	1,383	1,244	118.0%	106.1%
2011	1,177	1,359	1,248	115.5%	106.0%
2012	1,133	1,315	1,194	116.0%	105.3%
2013	1,098	1,284	1,170	117.0%	106.6%
2014	1,089	1,274	1,159	117.0%	106.4%

Table C-6 Central Hudson Gas & Electric ICAP to UCAP Translation

C.2.2 Consolidated Edison (Con Ed)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	13,400	15,812	14,953	118.0%	111.6%
2007	13,634	15,883	15,175	116.5%	111.3%
2008	13,911	15,998	15,073	115.0%	108.4%
2009	14,043	16,360	15,050	116.5%	107.2%
2010	13,655	16,113	14,490	118.0%	106.1%
2011	13,451	15,535	14,261	115.5%	106.0%
2012	13,431	15,579	14,149	116.0%	105.4%
2013	13,371	15,644	14,250	117.0%	106.6%
2014	13,719	16,051	14,594	117.0%	106.4%

Table C-7 Con Ed ICAP to UCAP Translation

C.2.3 Long Island Power Authority (LIPA)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	5,406	6,379	6,033	118.0%	111.6%
2007	5,322	6,200	5,923	116.5%	111.3%
2008	5,359	6,163	5,807	115.0%	108.4%
2009	5,432	6,328	5,821	116.5%	107.2%
2010	5,286	6,238	5,609	118.0%	106.1%
2011	5,404	6,242	5,730	115.5%	106.0%
2012	5,508	6,390	5,803	116.0%	105.4%
2013	5,449	6,375	5,807	117.0%	106.6%
2014	5,470	6,400	5,819	117.0%	106.4%

Table C-8 LIPA ICAP to UCAP Translation

C.2.4 National Grid (NGRID)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	7,052	8,321	7,869	118.0%	111.6%
2007	6,719	7,827	7,478	116.5%	111.3%
2008	6,763	7,777	7,327	115.0%	108.4%
2009	6,728	7,839	7,211	116.5%	107.2%
2010	6,732	7,944	7,144	118.0%	106.1%
2011	6,575	7,594	6,971	115.5%	106.0%
2012	6,749	7,829	7,110	116.0%	105.4%
2013	6,821	7,981	7,270	117.0%	106.6%
2014	6,862	8,028	7,299	117.0%	106.4%

Table C-9 NGRID ICAP to UCAP Translation

C.2.5 New York Power Authority (NYPA)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	584	689	652	118.0%	111.6%
2007	588	685	655	116.5%	111.3%
2008	579	666	628	115.0%	108.4%
2009	587	684	629	116.5%	107.2%
2010	318	375	337	118.0%	106.1%
2011	320	369	339	115.5%	106.0%
2012	576	668	607	116.0%	105.3%
2013	589	690	628	117.0%	106.6%
2014	506	592	539	117.0%	106.4%

Table C-10 NYPA ICAP to UCAP Translation

C.2.6 New York State Electric & Gas (NYSEG)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	2,932	3,459	3,271	118.0%	111.6%
2007	3,217	3,748	3,581	116.5%	111.3%
2008	3,141	3,612	3,404	115.0%	108.4%
2009	3,112	3,625	3,335	116.5%	107.2%
2010	3,075	3,629	3,263	118.0%	106.1%
2011	3,037	3,508	3,220	115.5%	106.0%
2012	3,127	3,627	3,294	116.0%	105.4%
2013	3,113	3,643	3,318	117.0%	106.6%
2014	3,229	3,778	3,435	117.0%	106.4%

Table C-11 NYSEG ICAP to UCAP Translation

C.2.7 Orange & Rockland (O & R)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	1,130	1,333	1,261	118.0%	111.6%
2007	1,132	1,318	1,259	116.5%	111.3%
2008	1,192	1,371	1,292	115.0%	108.4%
2009	1,180	1,374	1,264	116.5%	107.2%
2010	1,157	1,366	1,228	118.0%	106.1%
2011	1,173	1,355	1,243	115.5%	106.0%
2012	1,158	1,344	1,220	116.0%	105.4%
2013	1,172	1,371	1,249	117.0%	106.6%
2014	1,191	1,393	1,267	117.0%	106.4%

Table C-52 O & R ICAP to UCAP Translation

C.2.8 Rochester Gas & Electric (RGE)

Year	Forecast Peak Load (MW)	ICAP Requirement (MW)	UCAP Requirement (MW)	% ICAP of Forecast Peak	% UCAP of Forecast Peak
2006	1,629	1,922	1,817	118.0%	111.6%
2007	1,632	1,901	1,816	116.5%	111.3%
2008	1,649	1,897	1,787	115.0%	108.4%
2009	1,652	1,925	1,771	116.5%	107.2%
2010	1,630	1,923	1,729	118.0%	106.1%
2011	1,576	1,821	1,671	115.5%	106.0%
2012	1,612	1,870	1,699	116.0%	105.4%
2013	1,666	1,949	1,775	117.0%	106.6%
2014	1,600	1,872	1,702	117.0%	106.4%

Table C-63 RGE ICAP to UCAP Translation

C.3 Wind Resource Impact on the NYCA IRM and UCAP Markets

Wind generation is generally classified as an "intermittent" or "variable generation" resource with a limited ability to be dispatched. The effective capacity of wind generation can be quantified and modeled using the GE-MARS program similar to conventional fossil-fired power plants. There are various modeling techniques to model wind generation in GE-MARS; the method that ICS has adopted uses historical New York hourly wind farm generation outputs. The most recent full year for which New York wind generation is available is 2013. This data can be scaled to the nameplate capacity and assigned geographically to new and existing wind generation units.

For a wind farm or turbine, the nameplate capacity is the ICAP while the effective capacity is equal to the UCAP value. Seasonal variability and geographic location are factors that also affect wind resource availability. The effective capacity of wind generation can be either calculated statistically directly from historical hourly wind generation outputs, and/or by using the following information:

- Production hourly wind data.
- Maintenance cycle and duration
- EFOR (not related to fuel)

In general, effective wind capacity depends primarily on the availability of the wind. Wind farms in New York on average have annual capacity factors that are on the order of 25% based on their nameplate ratings. A wind plant's output can range from close to nameplate under favorable wind conditions to zero when the wind doesn't blow. On average a wind plant's output is higher on average at night, and has higher output on average in the winter versus the summer.

Another measure of a wind generator's contribution to resource adequacy is its effective capacity which is its expected output during the summer peak hours of 2 PM to 6 PM for the months of June through August. The calculation of the effective capacity value for wind generation in New York is based on 2013 wind production/generation data and was calculated to be 14%. This means on average 14% of a wind generator nameplate rating will be available across the summer peak hours.

Appendix D

Glossary of Terms

D. Glossary

Term	Definition
Availability	A measure of time a generating unit, transmission line, or other facility is capable of providing service, whether or not it actually is in service. Typically, this measure is expressed as a percent available for the period under consideration.
Capability Period	Six (6) month periods which are established as follows: (1) from May 1 through October 31 of each year ("Summer Capability Period"); and (2) from November 1 of each year through April 30 of the following year ("Winter Capability Period"); or such other periods as may be determined by the Operating Committee of the NYISO. A summer capability period followed by a winter capability period shall be referred to as a "Capability Year." Each capability period shall consist of on-peak and off-peak periods.
Capacity	The rated continuous load-carrying ability, expressed in megawatts ("MW") or megavolt-amperes ("MVA") of generation, transmission or other electrical equipment.
Contingency	An actual or potential unexpected failure or outage of a system component, such as a generator, transmission line, circuit breaker, switch, or other electrical element. A contingency also may include multiple components, which are related by situations leading to simultaneous component outages.
Control Area (CA)	An electric system or systems, bounded by interconnection metering and telemetry, capable of controlling generation to maintain its interchange schedule with other control areas and contributing to frequency regulation of the interconnection.
Demand	The rate at which energy must be generated or otherwise provided to supply an electric power system.
Emergency	Any abnormal system condition that requires automatic or immediate, manual action to prevent or limit loss of transmission facilities or generation resources that could adversely affect the reliability of an electric system.
External Installed Capacity (External ICAP)	Installed capacity from resources located in control areas outside the NYCA that must meet certain NYISO requirements and criteria in order to qualify to supply New York LSEs.
Firm Load	The load of a Market Participant that is not contractually interruptible. Interruptible Load – The load of a Market Participant that is contractually interruptible.
Generation	The process of producing electrical energy from other forms of energy; also, the amount of electric energy produced, usually expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).
Installed Capacity (ICAP)	Capacity of a facility accessible to the NYS Bulk Power System, that is capable of supplying and/or reducing the demand for energy in the NYCA for the purpose of ensuring that sufficient energy and capacity is available to meet the reliability rules.
Installed Capacity Requirement (ICR)	The annual statewide requirement established by the NYSRC in order to ensure resource adequacy in the NYCA.
Term	Definition
--	---
Installed Reserve Margin (IRM)	That capacity above firm system demand required to provide for equipment forced and scheduled outages and transmission capability limitations.
Interface	The specific set of transmission elements between two areas or between two areas comprising one or more electrical systems.
Load	The electric power used by devices connected to an electrical generating system. (IEEE Power Engineering)
Load Relief	Load reduction accomplished by voltage reduction or load shedding or both. Voltage reduction and load shedding, as defined in this document, are measures by order of the NYISO.
Load Shedding	The process of disconnecting (either manually or automatically) pre-selected customers' load from a power system in response to an abnormal condition to maintain the integrity of the system and minimize overall customer outages. Load shedding is a measure undertaken by order of the NYISO. If ordered to shed load, transmission owner system dispatchers shall immediately comply with that order. Load shall normally all be shed within 5 minutes of the order.
Load Serving Entity (LSE)	In a wholesale competitive market, Central Hudson Gas & Electric Corporation, Consolidated Edison Company of New York, Inc., Long Island Power Authority ("LIPA"), New York State Electric & Gas Corporation, Niagara Mohawk Power Corporation, Orange & Rockland Utilities, Inc., and Rochester Gas and Electric Corporation, the current forty-six (46) members of the Municipal Electric Utilities Association of New York State, the City of Jamestown, Rural Electric Cooperatives, the New York Power Authority ("NYPA"), any of their successors, or any entity through regulatory requirement, tariff, or contractual obligation that is responsible for supplying energy, capacity and/or ancillary services to retail customers within New York State.
Locational Capacity Requirement (LCR)	Due to transmission constraints, that portion of the NYCA ICAP requirement that must be electrically located within a zone, in order to ensure that sufficient energy and capacity are available in that zone and that NYSRC Reliability Rules are met. Locational ICAP requirements are currently applicable to three transmission constrained zones, New York City, Long Island, and the Lower Hudson Valley, and are normally expressed as a percentage of each zone's annual peak load.
Minimum Locational Capacity Requirement (MLCR)	The capacity to load ratios of the localities at the Tan 45 point of the IRM-LCR curve from the final base case of the IRM study.
New York Control Area (NYCA)	The control area located within New York State which is under the control of the NYISO. See Control Area.
New York Independent System Operator (NYISO)	The NYISO is a not-for-profit organization formed in 1998 as part of the restructuring of New York State's electric power industry. Its mission is to ensure the reliable, safe and efficient operation of the State's major transmission system and to administer an open, competitive and nondiscriminatory wholesale market for electricity in New York State.

NYSRC-NYCA Installed Capacity Requirement for the Period May 2015 through April 2016

Term	Definition
New York State Bulk Power System (NYS Bulk Power System or BPS)	The portion of the bulk power system within the New York Control Area, generally comprising generating units 300 MW and larger, and generally comprising transmission facilities 230 kV and above. However, smaller generating units and lower voltage transmission facilities on which faults and disturbances can have a significant adverse impact outside of the local area are also part of the NYS Bulk Power System. An organization established by agreement (the "NYSRC Agreement") by and
New York State Reliability Council, LLC (NYSRC)	among Central Hudson Gas & Electric Corporation, Consolidated Edison Company of New York, Inc., LIPA, New York State Electric & Gas Corporation, Niagara Mohawk Power Corporation, Orange & Rockland Utilities, Inc., Rochester Gas and Electric Corporation, and the New York Power Authority, to promote and maintain the reliability of the Bulk Power System, and which provides for participation by Representatives of Transmission Owners, sellers in the wholesale electric market, large commercial and industrial consumers of electricity in the NYCA, and municipal systems or cooperatively-owned systems in the NYCA, and by unaffiliated individuals.
New York State (NYS) Transmission System	The entire New York State electric transmission system, which includes: (1) the transmission facilities under NYISO operational control; (2) the transmission facilities requiring NYISO notification, and; (3) all remaining facilities within the NYCA.
Operating Limit	The maximum value of the most critical system operation parameter(s) which meet(s): (a) pre-contingency criteria as determined by equipment loading capability and acceptable voltage conditions; (b) stability criteria; (c) post-contingency loading and voltage criteria.
Operating Procedures	A set of policies, practices, or system adjustments that may be automatically or manually implemented by the system operator within a specified time frame to maintain the operational integrity of the interconnected electric systems.
Operating Reserves	Resource capacity that is available to supply energy, or curtailable load that is willing to stop using energy, in the event of emergency conditions or increased system load, and can do so within a specified time period.
Reserves	In normal usage, reserve is the amount of capacity available in excess of the demand.
Resource	The total contributions provided by supply-side and demand-side facilities and/or actions.
Stability	The ability of an electric system to maintain a state of equilibrium during normal and abnormal system conditions or disturbances.
Thermal Limit	The maximum power flow through a particular transmission element or interface, considering the application of thermal assessment criteria.
Transfer Capability	The measure of the ability of interconnected electrical systems to reliably move or transfer power from one area to another over all transmission lines (or paths) between those areas under specified system conditions.
Transmission District	The geographic area served by the NYCA investor-owned transmission owners and LIPA, as well as customers directly interconnected with the transmission facilities of NYPA.

Term	Definition
Transmission Owner	Those parties who own, control and operate facilities in New York State used for the transmission of electric energy in interstate commerce. Transmission owners are those who own, individually or jointly, at least 100 circuit miles of 115 kV or above in New York State and have become a signatory to the TO/NYISO Agreement.
Voltage Limit	The maximum power flow through some particular point in the system considering the application of voltage assessment criteria.
Voltage Reduction	A means of achieving load reduction by reducing customer supply voltage, usually by 3, 5, or 8 percent. If ordered by the NYISO to go into voltage reduction, Transmission Owner system dispatchers shall immediately comply with that order. Quick response voltage reduction shall normally be accomplished within ten (10) minutes of the order.
Zone	A defined portion of the NYCA area that encompasses a set of load and generation buses. Each zone has an associated zonal price that is calculated as a weighted average price based on generator LBMPs and generator bus load distribution factors. A "zone" outside the NY control area is referred to as an external zone. Currently New York State is divided into eleven zones, corresponding to ten major transmission interfaces that can become congested.