Attachment #11.5 Return to Agenda

Cyber Security Overview

Doug Chapman VP & CIO

NYSRC Executive Committee Meeting

March 9, 2018

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Agenda

- Cyber threats overview for the electric industry
- Sources for cyber security intelligence
- NERC Supply Chain Security Standard

Cybersecurity Threat Overview for Utilities

- The threat landscape for utilities has many overlaps with other sectors
- Common threats include:
 - Phishing attacks to install malware and / or harvest credentials
 - Ransomware attack
 - Crypto currency mining
 - Watering hole attack
 - Internet-based scanning for vulnerabilities in a corporate perimeter
 - Distributed Denial of Service (DDoS) attacks

Phishing Attack

- Very popular form of attack that has been around since the mid-1990's
- Typically a fraudulent email appearing to come from a legitimate source
- Emails include a link to a fraudulent website or an attachment containing malware
- Objective of the attacker is to either install malware on the host computer, or get the victim to divulge private information
- Emails can be sent to a wide audience very quickly
- Can be hard to recognize
- Employee training is very important!

Ransomware Attack

- A form of malware that finds data that a user has access to and encrypts the files
- For a price (or Ransom), the victim is then told how to recover the files
- Often spreads through phishing, although not exclusively
- User access to many active data stores adds risk to this type of attack

Crypto Mining Attack

- Digital currencies have gained popularity and value
- Mining for digital currencies has become a more popular way for cyber criminals to generate illegal revenues
- Crypto mining is a complex process where computer resources are used for blockchain transaction verification
- Crypto mining is a highly resource intensive activity
- Cyber criminals are hijacking computers in larger numbers to support mining activities
- Business systems slow down or stop functioning due to a lack of resources that is being consumed by the mining malware

Watering Hole Attack

- Attacker guesses or observes what website a targeted business or group often uses
- Attacker looks for vulnerabilities in the website
- Attacker then compromises the website with malware or redirection code
- A victim from the targeted group visits the compromised website and is infected with the malware

The Classic Cyber Attack Lifecycle

1	Reconnaissance	 Identify potential targets Assess vulnerabilities
2	Initial Compromise	• Bypass perimeter defenses through a compromised system or account
3	Command & Control	Adversary installs malware to establish persistent remote access to your environment
4	Lateral Movement	 Once the connection is established, attacker moves laterally to compromise additional systems
5	Target Attainment	• At this stage, attacker has a good understanding of your IT environment and has obtained persistent access to the target system
6	Action Objectives	Attacker is then in a position to execute their objectives at a time of their choosing

Unique Risks for Utilities

- Utilities typically implement a logically (or physically) separate network for their critical operations systems
 - Often referred to as the "OT" or Operational Technology environment
- Cyber attackers can use common attack vectors to gain access to a corporate network, then pivot to the OT environment
- Utilities also use a wide variety of "connected" equipment in the field that can provide additional attack vectors to an adversary if not adequately protected
- NERC's CIP standards are intended to protect the OT environment
- Avoid the trap of targeting only CIP compliance within the security program
- Need to be secure and compliant!

Significant Cyber Events / Threats

Ukraine Cyber Incident

- December, 2015
- Malware introduced in to corporate network
- Gained credentials
- Pivoted to OT network
- Used valid credentials to gain access to OT systems
- Used OT systems to cut off power to over 230,000 customers

Dyn Cyber Attack

- October 2016
- Dyn provides domain name services on the Internet
- Attacker used a Botnet of 10M+ IoT devices to flood DYN with domain name lookup requests
- Impacted Internet access to many popular services such as Amazon

Industroyer Malware

- Modular malware that is customizable
- Tailored to target Industrial Control Systems
- Can target substation switches and breakers
- Thought to have been used in the 2016 attack on the Ukraine power grid

WannaCry Malware

- May 2017
- Worldwide cyber attack affecting over 150 countries
- Self propagating malware using Windows vulnerability
- Patch was already available from Microsoft
- Encrypted data and demanded ransom payment

Managing Cyber Security Risks

Key Elements of a Strong Security Program

Accurate Inventory	 Inventory of assets that need to be managed and maintained
Network Controls and Remote Access	Network segmentation with limited and controlled access between segments Secure remote access with multi-factor authentication
Monitoring and Incident Response	 System monitoring capabilities to detect malicious activity Security incident response procedures with escalations defined
Access Management Controls	Strong access management processes Application of "Least Privilege" principles
Password Management	Strong passwords Change default passwords
Vulnerability Management	 Monitor and test vulnerabilities of systems Address vulnerabilities consistently and quickly
Security Governance & Risk Management	 Strong security policies that includes controls to enforce them Risk management framework that informs improvement programs
Employee Training	 Security awareness programs for employees Phishing exercises

Sources for Cybersecurity Intelligence

- **MS-ISAC:** Multistate Information Sharing & Analysis Center
- E-ISAC: Electricity Information Sharing & Analysis Center
- CRISP: Cybersecurity Risk Information Sharing Program
- ICS-CERT: Industrial Control Systems Cyber Emergency Response Team

NERC CIP Supply Chain Security Requirements

- New set of requirements to address supply chain security concerns
- NERC submitted draft language to FERC in September, 2017
- FERC has largely accepted the language, but is contemplating some changes
- FERC issued a NOPR in January 2018, with comments due back in March

NERC CIP Supply Chain Security Requirements

Proposed requirements cover 4 primary areas:

- **1.** Implement processes to assess cyber risks from vendor product and services
- 2. Updates to vendor contracts to meet new compliance requirements
 - Vendor coordination / notification of incidents, vendor remote access, software integrity, etc.
- 3. Implement processes to manage vendors remote access to critical systems
- 4. Verification of software integrity and authenticity

Other key points:

- NERC proposed an 18 month implementation, FERC is leaning towards 12 months
- FERC is interested in being more inclusive regarding the types of devices that are in scope

Questions?

