IEEE 2800 Implementation in the NYCA

Reigh Walling

WESC Walling Energy Systems Consulting, LLC

Why Adopt IEEE 2800?

- Urgent need to set standards applicable to IBR in order to protect BPS security
 - Rapidly increasing IBR penetration
 - Actual system events as observed in WECC and ERCOT demonstrate threats
- Development of IBR standards requires much effort and a diversity of expertise – IEEE 2800 is already done
- IEEE 2800 development and balloting had wide participation, consensus
- OEMs are (or will be) designing equipment for compliance with IEEE 2800
- Familiarity; developers are dealing with the same standard elsewhere
 - Minimized misinterpretations

It may be imperfect, but it beats starting from scratch!

Adoption and Implementation of IEEE 2800

- IEEE standards are, by definition, voluntary
- Adoption of a standard by an entity having jurisdictional authority then makes the standard mandatory and enforceable by that entity
- Adoption of a standard can be:
 - In toto
 - Partial adoption, by clause
 - With additional requirements
 - With modified requirements
 - With clarified requirements; e.g., more rigorously defined
- NYSRC might choose to defer some non-reliability requirements to TOs or other entities for adoption (e.g., power quality)

Potential Interference from NEC Application

- National Electric Code claims scope of all non-utility electric facilities
 - Requires all electric equipment to be "listed" (i.e., certified to UL test standards)
 - Only UL standard for inverters has been UL-1741, based on distribution interconnection standards (IEEE 1547)
 - Primarily affects solar because of familiarity to electric inspectors
 - Inappropriate for major transmission-connected generation resources
- Yet to be seen if there will be a conflict between these standards
- Perhaps this can be addressed by regulators

Clause-by-Clause Relevance to System Reliability

					Recommendation
Clause	Sub-Clause	Title	Scope Summary	Relevance to BPS Security	to NYSRC
4		General interconnection technical specifications and performance requirements			
			Clarifies that other devices that power inverters can		
			be used to meet performance at the defined	Sets the context for the remainder of the	
	4.1	Introduction	Reference Point of Applicability	standard	Adopt
				Sets the context for the remainder of the	
	4.2	Reference points of applicability (RPA)	Defines where performance is to be achieved	standard	Adopt
			Defines the characteristics of voltage and frqeuency		
			that are appliable; e.g., phase-phase and phase-	Sets a definition for the remainder of the	
	4.3	Applicable voltages and frequency	ground fundamental-frequency voltage	standard	Adopt
			Specifies only accuracy of measurements reported to		
	4.4	Measurement accuracy	SCADA and for event recording	Relatively non-critical.	Adopt
			Requirement to be capable of interconnection with		
		Operational measurement and communication	TSO's SCADA, as specified by TSO. Little detail is		
	4.5	capability	specified in the standard.	Important for system operator to have visibility	Adopt
			Requirement to accept external control inputs, such		•
	4.6	Control capability requirements	as curtailment orders.	Important to system control.	Adopt
			Sets the pirority of various requirements to avoid	Important because this clarfifies other	
	4.7	Prioritization of IBR responses	potential conflicts	requirements of the standard	Adopt
	4.8	Isolation device	Switchgear requirement: visible disconnect	Relatively non-critical.	Defer to TO
			Prohibition of energization of a de-energized system.		
	4.9	Inadvertent energization of the TS	except as an authorized black start sequence.	Relatively non-critical.	Adopt
				Has implications to system restoration. Some	
				of the requirements could have negative BPS	
				consequences in some cases, such as by	
			Defines system voltage and frequency parameters for	disallowing IBR to reconnect when the system	
			reconnection after a trip or for startup Disallows	support might be desparately needed. This	
	4 10	Enter service	operation where IBR is signaled not to operate	subclaise needs close review	22
	4.10		Bequirement for protection to have standard FMI		
	4 1 1	Interconnection integrity	withstand (e.g. as from mobile radios)	Relatively non-critical	Exclude*
			Effectively requiries IBR to present a grounded source		Exclude
			to effectively arounded systems and to not provide a		
			ground source (zero sequence admittance) when not		
	1 1 2	Integration with TS grounding	compatible with the grid	Non-critical to BBS, primarily a TO concorn	Defer to TO
	4.1Z			Non-critical to BPS, primarily a 10 concern.	

WESC

Clause-by-Clause Relevance (cont'd)

					Recommendation	
Clause	Sub-Clause	Title	Scope Summary	Relevance to BPS Security	to NYSRC	
5		Reactive power-voltage control requirements within the continuous operation region				
				Can be essential for adequate transmission		
	5.1	Reactive power capability	Steady state reactive power capability	system voltage source.	Adopt	
			Specifies voltage regulation and reactive control	Important to maintaining good steady-state and		
	5.2	Voltage and reactive power control modes	characteristics	dynamic voltage control.	Adopt	
6		Active-power-frequency response requirements				
			Esseintially, governor type response specified, to the			
			degree that power headroom and footroom are			
			available. Does not mandate pre-curtailment or	Critical to frequency stability as IBR penetration		
	6.1	Primary frequency response (PFR)	storage.	increases.	Adopt	
			Specifies fast-acting power resonpse to tansient			
			frequency drops as a mitigation for lack of inherent	Critical to frequency stability as IBR penetration		
	6.2	Fast frequency response (FFR)	inertia in most IBR.	increases.	Adopt	
	1					
7		Response to TS abnormal conditions				
			Specifis that all ride-through requirements be met at			
			the "reference point of applicability" (typically, the HV	Supportive requirement that helps define ride-		
	7.1	Introduction	side of the facility main transformer).	through.	Adopt	
				Highly critical; lack of ride-through can possibly		
	7.2	Voltage	Establishes voltage ride-through requirements	result in massive resource loss during faults.	Adopt	
			Establishes frequency ride-through requirements.	Highly critical; lack of ride-through can possibly		
			Includes frequency rate-of-change and phase jump	result in massive resource loss during during		
	7.3	Frequency	ride through.	frequency events	Adopt	
	7.4	Return to service after IBR plant trip	Simple cross reference to Clause 4.10			

Clause-by-Clause Relevance (cont'd)

					Recommendation
Clause	Sub-Clause	Title	Scope Summary	Relevance to BPS Security	to NYSRC
9		Protection		· ·	
			Requirement that frequency protection, if used, shall	Important to ensure ride-through compliance	
			not interfere with ride-through and is coordinated	and avoid trips that can aggravate grid	
	9.1	Frequency protection	with TSO requirements	disturbances.	Adopt
				Important to ensure ride-through compliance	
				and avoid trips that can aggravate grid	
				disturbances. There have been suggestions to	
				use sensitive ROCOF settings to avoid islands,	
			Requirement that ROCOF protection, if used, shall not	but which could cause unnecessary resource	
			interfere with ride-through and is coordinated with	loss during a severe system frequency	
	9.2	Rate of change of frequency (ROCOF) protection	TSO requirements	excursion event.	Adopt
			Requirement that overvoltage protection, if used,		
			shall not interfere with ride-through. Requires	Critical. Several large-scale IBR trip events in	
			transient overvoltage protection to use filtered	WECC and ERCOT have been attributed partly	
			quantities in order to avoid trips due to transient	due to peak-sensitive instantaneous voltage	
	9.3	AC voltage protection	surges.	protections.	Adopt
				Critical. External grid faults can cause	
				significant overcurrent for some types of IBR	
				(e.g, Type III wind turbines), and this protection	
				needs to be coordinated such that overcurrents	
			Requirement that overcurent protection, if used, shall	due to ride-through events do not result in a	
	9.4	AC overcurrent protection	not interfere with ride-through.	trip.	Adopt
				Many IBR are made up of relatively small	
				inverters that are primarily designed for the	
				distribution (DER) market where island	
				protection is mandated. These schemes can	
				potentially interfere with ride-through or	
			Requirement that any unintentional island protection,	produce other undesired interactions with teh	
	9.5	Unintentional islanding protection	if used, shall not interfere with ride-through.	BPS.	Adopt
			Essentially, these are protectin requirements for the		· · · · ·
			HV tie line between the IBR plant and the	Has impact on the BPS, but not particulary	
	9.6	Interconnection system protection	transmission system POI.	unique to IBR.	Adopt

Clause-by-Clause Relevance (cont'd)

					Recommendation	
Clause	Sub-Clause	Title	Scope Summary	Relevance to BPS Security	to NYSRC	
			Loosely defines models of IBR units and IBR plant			
			controls that must be provided to the TSO/TO.	Highly critical to predicting compliance with ride-		
			Extends to EMT and short-circuit models, as well as	through and other critical requirements. Also		
10		Modeling data	dynamic models.	important to post-event analysis.	Adopt	
		Measurement data for performance monitoring and	Specifies operational data and measurements that	Critical to compliance monitoring and post-		
11		validation	must be monitored, recorded, and retained.	event analysis	Adopt	
12		Test and verification requirements				
			Clause defines, in general, what must be tested and	Verification of compliance is critical, but also		
	12.1	Introduction	evaluated.	very difficult and complex.	Adopt	
			Defines, in general terms, type tests, design			
			evaluation, commisioning tests, and post-	Verification of compliance is critical, but also		
	12.2	Definitions of verification methods	commisioning monitoring and testing.	very difficult and complex.	Adopt	
			Tabulates which test and verification steps are	Verification of compliance is critical, but also		
	12.3	Conformance verification framework	applicable to each clause of the standard	very difficult and complex.	Adopt	

WESC

AGIR

- IEEE 2800 refers to the "Authority Governing Interconnection Requirements" AGIR
- AGIR is defined as:

"...a cognizant and responsible entity that defines, codifies, communicates, administers, and enforces the policies and procedures for allowing electrical interconnection of inverter-based resources interconnecting with associated transmission systems."¹

- We can assume for implementation of this standard in the NYCA, NYSRC is the AGIR
- IEEE 2800 also refers to:
 - Transmission system operator: entity responsible for operating transmission system
 - Transmission system owner
- Standard provides various forms of discretion to TS Operator and TS Owner
- As the AGIR, NYSRC should have the authority to define what is required for these discretionary issues

9

Specific Discretionary Items

- While NYCR can impose whatever requirements it deems necessary for reliability, IEEE 2800 specifically states that certain items are discretionary to AGIR, TS Owner or TS Operator
- System operating conditions for which specified performance is required
 - Much performance is defined by system strength; e.g., disturbance recovery performance, voltage regulation dynamics, etc.
 - Should be defined in terms of contingency level
 - Consider different levels of performance acceptable for level of contingency
 - What about future system changes that affect performance?
 - System weakening due to synchronous generation retirement
 - Addition of potentially interacting equipment (e.g., series capacitors, FACTS devices, etc.)
- Option for changing RPA for some requirements from the POM to another location; e.g. POI
 - E.g., offshore wind that can have GVAR of cable charging between POM and POI

Discretionary Items (cont'd)

- Communication protocol for data interoperability with TS Operator EMS
 - Most reasonably deferred to TS Operator (NYISO) or TS Owner
- Definition of IBR plant control inputs to be directly controlled by TS Operator
 - E.g., curtailment limits, voltage regulation setpoints, etc.
 - Most reasonably deferred to TS Operator (NYISO)
- "Enter service" settings (voltage and frequency parameters allowing startup)
 - Consider implications to system security during severe events
 - Perhaps larger IBR should be subject to TS Operator dispatch
- Utilization of reactive capability under zero active power output
 - Standard requires *capability* for vars at zero power; not utilization of this capability
 - Defer to the ancillary services market?
- Reactive power controls modes (voltage, pf, or fixed reactive)
 - Most reasonably deferred to TS Operator (NYISO)
- Step response time for voltage regulation performance
 - Actual response time dependent on real time grid strength; can't specify a fixed value
 - Reasonable to specify a maximum response time, or one that is based on short-circuit ratio
- Voltage regulation parameters (setpoint, droop)
 - Most reasonably deferred to TS Operator (NYISO)

Discretionary Items (cont'd)

- Primary frequency response (governor function)
 - Activation of primary frequency response
 - Droop settings defer to TS Operator (NYISO)
- Primary frequency response parameters
- Voltage ride-through magnitudes and durations
 - Specification of parameters differing from values stated in standard is very likely to result in confusion
- Reactive current vs. active current priority during voltage ride-through
 - Default in standard is reactive current priority
 - In the Eastern Interconnection, voltage support is generally more critical than frequency support, so default is recommended
- Current injection magnitude during ride-through; positive and negative sequence
 - Consider deferring to TS Operator, based on interconnection studies
- Harmonic voltage limits
 - Defer to TS Owner if the PQ clauses is adopted by NYSRC, N/A if not adopted

Discretionary Items (cont'd)

- Plant-level model submission requirements
 - Defaults are power flow, dynamic (user written and/or generic), EMT, short circuit, and harmonics models
 - Schedule for periodic updates
- Model verification methodology
 - Very complex and difficult subject

IEEE 2800 Compliance Verification

- Complicating factors
 - IEEE 2800 applies almost all requirements at the plant level (at PoM) and not on individual IBR units
 - IBR plants obviously cannot be laboratory tested
 - Even many individual IBR units are too large for practical full-scale testing
- Compliance verification requires integration of several different processes
 - IBR unit type testing cannot directly confirm plant complies, primarily to verify models and obtain input data for other processes
 - Design evaluation simulation studies and engineering calculations based on verified models of IBR plant components (IBR units + supplemental IBR devices)
 - As-built installation evaluation confirm that what has been constructed and applied settings are consistent with design evaluation process
 - **Commissioning tests** limited by allowable impacts on grid, and grid conditions at time of test
 - Post-commissioning monitoring real life, the ultimate test. IEEE 2800 has extensive data measurement and archiving requirements
 - **Periodic tests** similar to commissioning tests to confirm that nothing has been changed
 - **Periodic verification** studies initiated when substantial changes are made
- Details of these steps are to be defined by IEEE P2800.2 far from complete, presently

Implementation of IEEE 2800 prior to IEEE P2800.2 completion

- Will make adoption of IEEE 2800 more complex in the short run **BUT** IBRs are being connected to NYCA at too great a pace to wait years
- Contrasting approaches
 - Distribution/consumer level approach is to rigorously type test, certify, then assume compliance (e.g., IEEE 1547 & 1547.1 for DER)
 - Large BPS resources are not easily tested for POI compliance; they are modeled and analyzed, but ultimate "stick" is sanctions for observed non-compliance
- NYSRC will need to lean toward the latter for at least the interim period
- Adaptation of the interconnection process is needed to ensure compliance

Design Review

- Evaluation of inside-the-plant design has not traditionally been part of the interconnection review process
 - Experience has been that some developers do not provide an adequate design
 - Legal mess if plant is denied interconnection after construction
- Many performance factors cannot practically be physically confirmed until the BIG EVENT happens; then it's too late
- Modeling is essential, but there are many, many challenges
- Changes of equipment or even firmware require re-performance of studies
 - Can result in a resource-consuming iterative process

Model Challenges

- Some OEMs do not have models
- Models often do not reflect the equipment model and firmware to be utilized
- Varying degrees of physical model validation often very little
- Models are usually incomplete (e.g., critical protective functions left out)
- Models don't represent all equipment that affects compliance (e.g., auxiliary equipment that could trip and take resource off line)
- Submitted models often use generic parameters, not the actual parameters to be applied to the specific project
- Individual IBR unit models don't represent total plant performance; plantlevel control systems must also be modeled (sometimes not same OEM)
- Multi-unit plants need to be modeled as a single-unit equivalent, with some loss of validity

Modeling Platforms

- Rules and protocols may restrict usage of state-of-art modeling capability
- Conventional planning tools (e.g., positive-sequence fundamental-frequency dynamic simulations) are often not adequate to verify IBR performance and compliance
 - Conventional dynamic models of IBR represent what is supposed to happen, not how it happens
 - Inherent bandwidth (response speed) limitations of phasor-based computations
 - EMT models are needed (e.g., PSCAD, EMTP-RV, ATP, etc.)
- IBR OEMs have generally been restrictive in dissemination of EMT models
 - Concerns that IP (and potential IP infringements) are exposed
 - NDA requirements are typical; thus models cannot be shared
 - Generally, "black box" compiled models
- TO and TSO planning staffs generally are not experienced with EMT analysis and software
 - Complex and typically not user friendly
 - Outsourcing likely to be necessary, but qualified consultants are few and heavily backlogged

18

As-Built Evaluation and Commissioning

- As-built evaluation generally not done presently, except for checks of protection settings
- Commissioning tests have been the responsibility of the TOs, and must continue under their control
 - Varying scopes and procedures for commissioning
 - Presently may not address all of the IBR-specific performance issues
- Need for standardization and assignment of responsibility
 - E.g., guide-form scopes
 - Recommended testing processes
 - As-built evaluation checklists

Performance Monitoring

- Huge amounts of data will be acquired by IBR plants under IEEE 2800
- Who reviews?
 - Is there a need for an assigned staff to do this?
- When are the data reviewed?
 - Review of performance only after severe events risks non-detection of critical problems before they manifest as newspaper headlines
 - Some review of IBR performance during routine local disturbances is needed to validate performance, as well as models and studies
 - Model validation may require performing simulation studies based on actual system conditions during these routine events
- What should the sanctions be for non-performance?
- What is to be done if models prove to be grossly inaccurate?

Phase-In of Requirements

- Industry not prepared for immediate adoption of all IEEE 2800 requirements
 - Equipment capabilities vary
 - OEMs need time to modify and test equipment to support new requirements
- May need to phase in requirements
 - Early adoption of specific requirements that are reasonably achievable by today's equipment
 - Priority given to requirements most vital to bulk system security
- Full adoption may need to be delayed until testing standards are finalized
- Consider resources needed for verification and enforcement
- Applicability to projects in the pipeline

Conclusions

- IBR standards need to be applied to ensure NYCA reliability
 - IEEE 2800, or modifications of IEEE 2800 offer the only practical path to timely implementation
 - Other standards (i.e., NEC) may get in the way
- Implementation will require many decisions
 - Which parts of IEEE 2800 to adopt and when
 - Modifications and clarifications of requirements
 - Decide on discretionary specifications
- Phased adoption likely to be necessary
- Compliance enforcement will need to lean toward the "stick" approach (like NERC) and less on the pre-emptive approach (like IEEE 1547/UL-1741 DER certification)
- Compliance verification will be a great challenge
 - Processes must be defined
 - Inevitably will require human resources in short supply and high demand

BACKUP

Harmonic Distortion Specification Issues

- Specification of harmonic performance is complicated because the characteristics of the grid affect both harmonic current and voltage; i.e., not solely determined by the IBR plant
 - Grid harmonic impedances
 - Ambient voltage distortion in the grid from other sources
- Primary IEEE 2800 specification is based on harmonic current
 - Follows the precedent of IEEE 519 for loads
 - Not consistent with long-standing large-scale transmission-connected inverter interconnection specifications (i.e., HVDC) and international practice
- As a compromise, IEEE 2800 recommends that TSO *should* specify harmonic voltage limits
 - No specific harmonic voltage limits are recommended by IEEE 2800
 - IEEE 2800 allows TSO to waive harmonic current limits if harmonic voltage limits are not exceeded
- Ambient grid distortion issues:
 - IEEE 2800 current limits apply to currents caused by ambient distortion in the grid
 - However, current limits are not applicable if the voltage distortion is greater than IEEE 519 limits
 - The standard's current limits at particular frequencies do not apply if the current reduces the voltage distortion (e.g., if shunt filters are located in IBR plant that "sink" ambient grid harmonics

24