

IEEE 1547 – 2018 Impacts / Implementation

Jens Boemer, <u>jboemer@epri.com</u> Jose Cordova, <u>jcordova@epri.com</u>

New York State Interconnection Technical Working Group Meeting

August 26, 2020

in f
www.epri.com
© 2020 Electric Power Research Institute, Inc. All rights reserved.

This presentation is, in part, supported by the U.S. Department of Energy, Solar Energy Technologies Office under Award Number DE-EE0009019 Adaptive <u>Protection and <u>V</u>alidated <u>MOD</u>els to Enable Deployment of High Penetrations of Solar PV (PV-MOD).</u>

Summary: IEEE 1547-2018 — What Does It Mean for Me?

Aggregate DER Impacts on Bulk Power System

DER Frequency Tripping versus Ride-Through

- System frequency is defined by balance between load and generation
- Frequency is similar across entire interconnection
 - any DER exposed to large frequency deviations may trip simultaneously;
 - special concerns for system-split conditions
- Impact the same whether or not DER is on a high-penetration feeder
- NERC Reliability Coordinators
 - Colored entities in the map to the right

DER Voltage Tripping versus Ride-Through

Source: SCE

- Transmission faults can depress distribution voltage over very large areas
- Sensitive voltage tripping (i.e., 1547-2003) can cause massive loss of DER generation
- Resulting BPS event may be greatly aggravated

Timeline for Rollout of IEEE Std 1547[™]-2018 Compliant DER

The time to prepare for integration of IEEE 1547-2018 compliant inverters is now.

Evolution of Technical Interconnection Capability, Test, & Verification Requirements **Common Practices Leading Practices** IEEE Std 1547[™]-2018/ UL 1741 SB Penetration Penetration IEEE Std 1547a[™]-2014/ • Some voltage/reactive & active IEEE Std 1547[™]-2003/ Pen. **UL 1741 SA** power exchange (power factor $\neq 1$, **UL 1741** volt/var, volt/watt) • No voltage/reactive No voltage/reactive / High power exchange (power • Mandatory frequency response power exchange (power factor =1) • Mandatory voltage and frequency, factor =1) Volume Volume • No frequency response ROCOF, voltage phase jump ride-• No frequency response Volume through requirements Some voltage and No voltage or frequency frequency ride-through • Mandatory communications ride-through DER പ requirements capability requirements with one requirements ш К out of three standardized protocols • No standardized DEI No standardized MO (DNP3, 2030.5, SunSpec) Growing communications communications ustained capability or • Both DER equipment certification, capability or requirements e.g., UL 1741 SB, requirements and some DER facility / system • Only DER equipment • Only DER equipment verification required, updated IEEE certification required, certification required, 1547.1 design and as-built e.g., UL 1741 SA for e.g., UL 1741 for inverters evaluations and updated UL 1741 inverters certification for inverters

www.epri.com

Balancing Bulk & Distribution Grid Needs

Distribution Grid Side

- •<mark>Short trip times</mark>
- •Ride-through with momentary cessation
- Voltage rise concerns
- •Islanding concerns
- Protection coordination
- •Safety of line workers

Increasing need for T&D Coordination

Public EPRI-U Webinars <u>3002014545</u> <u>3002014546</u> <u>3002014547</u>

Bulk System Side

- Long trip times
- •Ride-through *without* momentary cessation
- Reactive power support
- •Dynamic voltage support during abnormal voltage
- •Frequency support

Recommendations on IEEE Std. 1547-2018 Adoption for DER

Common Performance Category / Capability Assignments

Normal Performance Categories

Power Conversion	Prime Mover / Energy Source	Category		
Inverter	Solar PV, Battery Energy Storage	Category B		
	Wind	Category B		
	Hydrogen Fuel Cell	Mutual Agreement		
Synchronous generator	Bio-/landfill gas, fossil fuel, hydro, combined heat & power	Category A		
Induction generator	Hydro	Mutual Agreement		

Abnormal Performance Categories

Power Conversion	Prime Mover / Energy Source	Category
Inverter	Solar PV, Battery Energy Storage	Category III ¹ (amended)
	Wind	Category II
	Hydrogen Fuel Cell	Mutual Agreement
Synchronous generator	Bio-/landfill gas, fossil fuel, hydro, combined heat & power	Category I
Induction generator	Hydro	Mutual Agreement

¹ was Category II prior to Amendment

⇒ Not in scope of NPCC guidance?

www.epri.com

Regional Smart Inverter Settings To Address Bulk System Reliability

RTOs/ISOs Guidelines for IEEE Std 1547™-2018 Adoption

ISO New England

June 1, 2018

Jan 1, 2022

- Coordination between ISO-NE and the MA's utilities in the Massachusetts Technical Standards Review Group
- Reference to UL 1741 SA as a stopgap to verify DER ride-through capability in the interim
 - Harmonization of voltage & frequency trip settings with IEEE Std 1547-2018 ranges of allowable settings (Link)

PJM Interconnection

Initiation of formal stakeholder proceedings in 2019

- Published PJM *Guideline for Ride Through Performance of Distribution-Connected Generators* for voluntary DER ride-through in Oct 2019 (PJM Website)
- Established minimum Ride-through requirements and trip time settings

MISO

10

Midcontinent Independent System Operator (MISO)

- MN PUC requested stakeholder process, see MISO's IEEE 1547 website
- Published the MISO Guideline for IEEE Std 1547-2018 Implementation (Link)
- Established the preferred regional Ride-through capabilities and trip time settings

<u>See also NERC's Reliability Guideline</u> Bulk Power System Reliability Perspectives on the Adoption of IEEE 1547-2018 (March 2020)

date not specified

Coordination of Distribution Protection Practices with DER Ride-Through

www.epri.com

Dynamic Voltage Support during Abnormal Voltage Conditions is not a Standardized Function

Steady State / Normal Conditions (Inside Continuous Operating Region)

- Clause 5.3.3 (Voltage-reactive power mode)
 - V reference: absolute or moving average
 - P-control, no integrator as in BPS IBR
 - Slower response, default open-loop response time: Category A: 5 s [1-90 s], Category B (inverters): 5 s [1-90 s]
- Industry Terms
 - "Dynamic Reactive Current"
 - "Dynamic VAr Support"
- Main purpose(s)
 - Power flow voltage profile at D & T
 - Post-contingency voltage collapse

Dynamic / Abnormal Conditions (Outside Continuous Operating Region)

- Clause 6.4.2.6 (Dynamic voltage support)
 - V reference: moving average
 - P-control, no integrator
 - Faster response, within cycles
- Clause 6.4.2.7.2 (Restore output with dynamic voltage support) continue 5 s post-fault
- Industry Terms
 - "Reactive current injection"
 - "Full dynamic grid support" (BDEW)
- Main purpose(s)
 - Improve voltage recovery, mitigate FIDVR
 - Prevent (legacy) DER or load from tripping

ITWG Specific Discussion

- ITWG to work with NYISO to create a regional guideline as recommended by <u>NERC Reliability Guideline Bulk Power System Reliability Perspectives on the</u> <u>Adoption of IEEE 1547-2018</u>?
 - Abnormal performance category assignment
 - Functional settings impacting BPS (trip, frequency droop, etc.)
- Work with distribution utilities regarding feeder & substation protection DER to coordinate with ride-through?
- Other Topics
 - Value of DER steady-state voltage/reactive power control?
 - Potential benefits & challenges of DER fault-related dynamic voltage support?

NYISO Reliability Guideline Could Provide Guidance to Distribution Providers

Together...Shaping the Future of Electricity

Jose Cordova **Devin Van Zandt** Tom Key **Jens Boemer** +1 206.471.1180 859-285922 +1 518.281.4341 jboemer@epri.com jcordova@epri.com dvanzandt@epri.com

(865) 218-8082 tkey@epri.com

Backup

Roadmap to Unlock Benefits of Advanced DER

Specify **DER** Performance and Functional **Capabilities**

• e.g., adopt IEEE Std 1547-2018 Update interconnection agreements

 e.g., allow for utilization of DER capabilities Design architecture and deploy DER communication infrastructure

 e.g., start with utility-scale DER before integrating retail-scale DER Specify DER Management System and select **DER Aggregations/Gr oup Management** Functions

 e.g., codify messages to be exchanged across the T&D interface Design market and integrate DER into grid operations

 e.g., energy products, capacity products, redispatch, regulating reserves

This Activity

Recommendations on IEEE Std. 1547-2018 Utilization for DER

Recommendations on IEEE Std. 1547-2018 Utilization for DER

EPRI DER Integration Engagement

Continuation Model Development, Improvement, and Validation of Inverter-Based Resources (Generating & Storage)

EPRI Transmission Research Related to DER

Provide guidelines and tools to create a technical basis for assignment of `abnormal performance categories' specified by IEEE Std 1547-2018.

Validated; publicly available models for various types of studies, reports detailing the work, close collaboration with industry stakeholders (NERC, WECC, IEEE etc.)

Dynamic Voltage Support is Only an Optional Requirement in IEEE 1547-2018

		IEEE	IEEE	IEEE	Rule 21	Rule 14H	
Function Set	Advanced Functions Capability	1547-	1547a-	1547-	7- 8 (Phases)	& UL	
		2003	2014	2018		SRDv1.1	
All	Adjustability in Ranges of Allowable Settings	Х	V	+			
Monitoring & Control	Ramp Rate Control				‡ (P1)	+	
	Communication Interface			‡	‡ (P2)	‡	
	Disable Permit Service						
	(Remote Shut-Off, Remote			+	‡ (P3)	‡	
	Disconnect/Reconnect)						
	Limit Active Power			+	‡ (P3)		
	Monitor Key DER Data			‡	‡ (P3)		
	Frequency Ride-Through (FRT)	Х	V	‡	‡ (P1)	‡	
Bulk System	Rate-of-Change-of-Frequency Ride-Through			‡	!!!	!!!	
Reliability	Voltage Ride-Through (VRT)	Х	V	‡	‡ (P1)	‡	
&	VRT of Consecutive Voltage Disturbances			+	!!!	!!!	
Frequency	Voltage Phase Angle Jump Ride-Through			‡ ₂₃	!!!	!!!	
Support	Dynamic Voltage Support during VRT		~	V	[‡ (P3)]		
	Frequency-Watt	Х	V	‡	‡ (P3)	‡	
Legend:	X Prohibited, V Allowed by Mutual Agreement, ‡ Capability Required						
	[] Subject to clarification of the technical requirements and use cases, !!! Important Gap						

The DER Performance Capability & Functional Settings Challenge

- Central database(s)
 - Includes only public, non-proprietary information otherwise available in utility interconnection documents
 - EPRI: <u>https://dersettings.epri.com</u>
- EPRI Phase 1 (2019):
 - Storage of *.csv files + metadata, search functionality
 - Need for external DER Settings Form (Excel) to validate settings and create *.csv files
- EPRI Phase 2 (2020+):
 - Verification of uploaded settings
 - Data mining, visualization

