NYCA IRM Requirement Study 2023-2024 Final Base Case (FBC) Model Assumptions Matrix

Draft V 0.0

NYSRC

Installed Capacity Subcommittee Meeting #257

February 2, 2022

Load Forecast

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
1	Peak Load Forecast (Preliminary Base Case – Parametric & Sensitivities)	2021 Gold Book NYCA: 32,308 MW ¹ NYC: 11,286 MW LI: 5,192 MW G-J: 15,453 MW (Attachment A1)				
2	Peak Load Forecast (Final Base Case)	October 2021 Fcst. NYCA: 32,139 MW ¹ NYC: 10,944 MW LI: 5,159 MW G-J: 15,171 MW				
3	Load Shape (Multiple Load Shape)	Bin 1: 2006 Bin 2: 2002 Bins 3-7: 2007				
4	Load Forecast Uncertainty (LFU)-	Zonal Model to reflect current data with input from Con Ed and LIPA. (Attachment A2)				
5	LFU Winter	Attachment A3				

1 BTM-NG loads have been incorporated into these numbers.

Generation Parameters

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
6	Existing Generating Unit Capacities	2021 Gold Book Values. Use min. (DMNC vs. CRIS) capacity value				
7	Proposed New Units (Thermal) and re-ratings	111.2 MW of new Thermal resources, (Attachment B1)				
8	Deactivations and Removals ³	19.1 MW of unit deactivations and (Attachment B2)				
9	Forced and Partial Outage Rates	Five-year (2016-2020) GADS data for each unit represented. Those units with less than five years – use representative data. (Attachment C)				
10	Planned Outages	Based on schedules received by the NYISO and adjusted for history				

Generation Parameters

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
11	Summer Maintenance	Nominal 50 MWs – divided equally between Zones J and K				
12	Combustion Turbine Derates	Derate based on temperature correction curves provided				
13	Existing and Proposed New Wind Units ⁴	158.1 MW of Wind Capacity additions totaling 2017.5 MW of qualifying wind (Attachment B3)				
14	Wind Shape	Actual hourly plant output over the period 2016-2020. New units will use zonal hourly averages or nearby units.				
15	Existing and Proposed New Solar Resources ⁴	182.9 MW of Solar Capacity additions totaling 214.4 MW of qualifying Solar Capacity. (Attachment B3)				
16	Solar Shape	Actual hourly plant output over the period 2016-2020. New units will use zonal hourly averages or nearby units.				

Generation Parameters

#inimal	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
17	BTM- NG Program	One new BTM NG resource (Attachment B5)				
18	Small Hydro Resources	Actual hourly plant output over the period 2016- 2020.				
19	Large Hydro	Probabilistic Model based on five years of GADS data (2016-2020)				
20	Landfill Gas	Actual hourly plant output over the period 2016- 2020.				
21	New ESR (Energy Storage Resources)4	0 MW of new battery storage scheduled. 0 MW of total battery storage modeled (see attachment B4)				
22	Energy Limited Resources (ELR)	Based upon elections made by August 1 st 2021				

Transactions- Imports and Exports

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
23	Capacity Purchases	Existing Rights: PJM – 1,080 MW HQ – 1,190 MW All contracts modeled as equivalent contracts. New 80 MW addition				
24	Capacity Sales	Long Term firm sales Summer 265.9 MW				
25	FCM Sales from a Locality ⁵	No sales modeled within study period				
26	Wheels through NYCA	300 MW HQ to NE equivalent contract				
27	New UDRs (Unforced capacity Deliverability Rights)	Projects with expired CRIS will be modeled as Emergency Assistance Only: HTP				
28	New EDRs (External Deliverability Rights)	80 MWs for 2021 Study				

⁵ Final FCM sales that will materialize are unknowable at the time of the IRM study. To reflect the impact these sales have on reliability, the NYISO applies a Locality Exchange Factor in the market.

Topology

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
29		Revisions due to Western NY Public Policy impacts, Central East derate, Cedars upgrade, ConEd-LIPA dynamic limit (Attachment E-E3)				
30	New Transmission	Cedars EDR from HQ				
31	AC Cable Forced Outage Rates	All existing Cable EFORds for NYC and LI to reflect most recent five-year history (2016-2020) (Attachment E4)				
32	UDR Line Unavailability	Five year history of forced outages (2016- 2020)				

Emergency Operating Procedures

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
33	Special Case Resources	July 2021–1164 MW based on registrations and modeled as 812 MW of effective capacity. Monthly variation based on historical experience.				
34	Other EOPs	863.6 MW of non- SCR/non- EDRP resources (Attachment D)				
35	EOP Structure	10 EOP steps modeled				

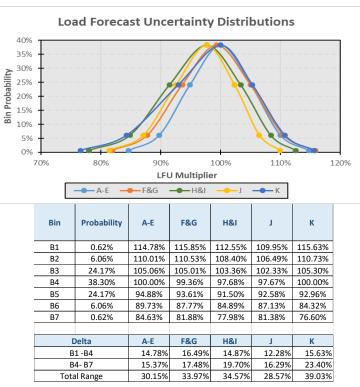
External Control Areas

#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
36	Mfd	Load and Capacity data will be provided by ISONE/NPCC CP-8 Data may be adjusted per NYSRC Policy 5 (Attachment E)				
37	ISONE, Quebec, IESO	Load and Capacity data will be provided by ISONE/NPCC CP-8 Data adjusted per NYSRC Policy 5 (Attachment E)				
38	External Adjustments per Policy 5	If needed, add load to externals proportional to existing excess capacity				
39	Reserve Sharing	All NPCC Control Areas indicate that they will initially share reserves equally among all members and then among non-members				
40	Emergency Assistance	Statewide Limit of 3,500 MW of emergency assistance allowed from neighbors.				

Miscellaneous

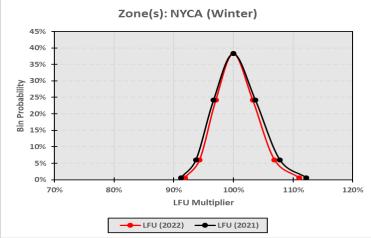
#	Parameter	2022 Model Assumptions	2023 Model Assumptions	Basis for Recommendation	Model Change	Est. IRM Impact
41	MARS Model Version	4.2.1765				
42	Environmental Initiatives	No new rules for 2022 Capability Year				

NYCA Summer Load Forecast Coincident and Non-Coincident Peak: 2022 PBC and FBC


	2022 PBC												
Area	А	В	С	D	E	F	G	Н	I	J	К	NYCA	G_J
NCP - Forecast	2799	2056.4	2847.8	692	1420	2385	2215	648	1400	11286.2	5191.6		
CP - Forecast	2644	1994.4	2781.8	676	1361	2347	2179	637	1379	11134.2	5174.6	32308	
G-J Peak - Forecast							2197	642	1390	11224.2			15453.2

	2022 FBC												
Area	А	В	С	D	E	F	G	Н	I	J	K	NYCA	G_J
NCP - Forecast	2918	2112.1	2881.2	668.1	1425.1	2419.8	2256.2	634.4	1408.9	10943.7	5158.5		
CP - Forecast	2764.2	2047.2	2814.8	655.7	1366.1	2381.7	2219.3	625.9	1390	10796.9	5076.8	32138.6	
G-J Peak - Forecast							2243.1	632.6	1404.9	10890.5			15171.1

	Delta												
Area	А	В	С	D	E	F	G	Н	I	J	К	NYCA	G_J
NCP - Forecast	-119.0	-55.7	-33.4	23.9	-5.1	-34.8	-41.2	13.6	-8.9	342.5	33.1		
CP - Forecast	-120.2	-52.8	-33.0	20.3	-5.1	-34.7	-40.3	11.1	-11.0	337.3	97.8	169.4	
G-J Peak - Forecast			1			•	-46.1	9.4	-14.9	333.7			282.1 ^S


NYCA Summer Load Forecast Uncertainty Model: 2021 and 2022

Load Forecast 2022

Draft

NYCA Winter Load Forecast Uncertainty Model: 2022

Bin	Probability	LFU (2022)	LFU (2021)
B1	0.62%	111.01%	112.22%
B2	6.06%	106.89%	107.77%
B3	24.17%	103.25%	103.69%
B4	38.30%	100.00%	100.00%
B5	24.17%	97.05%	96.69%
B6	6.06%	94.34%	93.76%
B7	0.62%	91.85%	91.22%

New Thermal Units and Unit Re-Ratings⁷

	New Thermal Units and Unit Re-ratings (summer ratings)								
Project or Generator Name	Zone	2022 Gold Book (MW) CRIS	2022 Gold Book (MW) DMNC	New or Incremental (MW)	2023 MARS Model (MW)				
		New Un	its						
Total New Units and Uprate									

Deactivations and Removals⁴

Unit Removal since 2021 IRMStudy						
Generator Name Type Zone CRIS(MW)						
Total Removals						

New Intermittent Resources

New Intermittent Units					
Resource	Zone	CRIS (MW)	Summer Capability (MW)	MARS Modeled Capacity	
		Wind	-		
Total Wind					
		Solar			
Total Solar					

New Energy Storage Resources*

Energy Storage					
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability VS CRIS	
	Ν	lew Battery Units			
Total New Energy Storage					

Resources in the Behind the Meter Net Generation Program (BTM-NG)

Attachment B4 -Units in the Behind the Meter Net Generation Program*						
Generator Name	Zone	Resource Value (MW) ⁹	Peak Load Adjustment (MW) ¹⁰			
Existing:						
Stony Brook	К	36.2	42.0			
Greenidge 4	С	103.4	32.0			
Lyons Falls Hydro	E	8.0	2.7			
(CONFIDENTIAL)***	(CONFIDENTIAL)*** J 21.3					
Red Rochester	В	74	51.4			
Total BTM-NG			149.4			

*The IRM study independently models the generation and load components of BTM:NG Resources.

⁹ Based on adjusted Dependable Maximum Gross Capability (DMGC) value.

¹⁰ Based on Average Coincident Host Load (ACHL).

*** One existing resource in Zone J is expected to begin participating in the BTM:NG program prior to 6/1/2022.

NYCA Five Year Derating Factors

Emergency Operating Procedures

Step	Procedure	2022 MW Value	
1	Special Case Resources –Load, Gen	1,164 MW Enrolled/ 812 MW modeled	
2	5% manual voltage Reduction	60.43 MW	
3	Thirty-minute reserve to zero	655 MW	
4	5% remote voltage reduction	483.09 MW	
5	Voluntary industrial curtailment	240.05 MW	
6	General Public Appeals	80 MW	
7	Emergency Purchases	Varies	
8	Ten-minute reserves to zero	1,310 MW	
9	Customer disconnections	As needed	
10	Adjustment used if IRM is lower than technical study margin	As needed	

IRM Topology

ISO-NE 14 Bubble Model

PJM Bubble Model

85

Attachment E4

5 Year Average Cable Outage Rate						
2016-20 2015-19						
6.42%	5.15%					

The facilities included in these averages are VFT, HTP, Dunwoodie-South, Y49/Y50, CSC, Neptune, Norwalk-Northport and A-Line.

SCR Determinations 2022 and 2023 IRM Studies

	SCR Performance for 2022 IRM Study								
Super Zones	Enrollments(July2021)	Forecast(2022) ¹	Performance Factor ²	UCAP (2022)	Adjustment Factor ³	ModelValue			
A-F	636.0	636.0	0.866	550.9	0.949	522.4			
G-I	84.9	84.9	0.772	65.5	0.846	55.5			
J	406.5	406.5	0.701	284.9	0.746	212.4			
К	36.8	36.8	0.735	27.0	0.822	22.2			
Totals	1164.2	1164.2		928.4		812.5			
					Overall Performance = 6	69.8%			

1. These values represent no growth from July 2020 ICAP based enrollments.

2. Performance Factor based on ACL methodology.

3. The SCR Adjustment factor captures two different performance derates; 1) Calculated Translation Factor (TF) between ACL and CBL values, and the Fatigue Factor (FF=1.00).

Attachment G

Wind Units Modeled

	Wind						
Resource	Zone	CRIS (MW)	Summer Capability (MW)	MARS Modeled Capability**			
Bliss Wind Power [WT]	A	100.5	100.5	100.5			
Canandaigua Wind Power [WT]	С	125.0	125.0	125.0			
High Sheldon Wind Farm [WT]	С	112.5	118.1	112.5			
Howard Wind [WT]	С	57.4	55.4	55.4			
Orangeville Wind Farm [WT]	С	94.4	93.9	93.9			
Wethersfield Wind Power [WT]	С	126.0	126.0	126.0			
Altona Wind Power [WT]	D	97.5	97.5	97.5			
Chateaugay Wind Power [WT]	D	106.5	106.5	106.5			
Clinton Wind Power [WT]	D	100.5	100.5	100.5			
Ellenburg Wind Power [WT]	D	81.0	81.0	81.0			
Jericho Rise Wind Farm [WT]	D	77.7	77.7	77.7			
Marble River Wind [WT]	D	215.2	215.2	215.2			
Hardscrabble Wind [WT]	E	74.0	74.0	74.0			
Madison Wind Power [WT]	E	11.5	11.6	11.5			
Maple Ridge Wind [WT01]	E	231.0	231.0	231.0			
Maple Ridge Wind [WT02]	E	90.7	90.8	90.7			
Munnsville Wind Power [WT]	E	34.5	34.5	34.5			
Cassadaga Wind [WT]	A	126.0	126.5	126.0			
Arkwright Summit Wind Farm [WT]*	A	78.4	78.4	78.4			
Roaring Brook [WT]	E	79.7	79.7	79.7			
Total		2020.0	2023.8	2017.5			

*This is an existing resource that became an ICAP supplier.

Attachment G1

Wind Units Not Currently Participating in ICAP Market

	Wind							
Resource	Zone	Nameplate (MW)	CRIS (MW)	Summer Capability (MW)	MARS Modeled Capacity			
Erie Wind [WT]	Α	15.0	0.0	0.0	0.0			
Steel Wind [WT]	А	20.0	0.0	0.0	0.0			
Western NY Wind Power [WT]	В	6.6	0.0	0.0	0.0			
Marsh Hill Wind Farm [WT]	С	16.2	0.0	0.0	0.0			
Copenhagen Wind [WT]	E	79.9	79.9	0.0	0.0			
Fenner Wind [WT]	С	30.0	0.0	0.0	0.0			
Total		167.7	79.9	0.0	0.0			

Attachment G2

Solar Units Modeled

Solar					
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability vs. CRIS	
Long Island Solar Farm [PV]	К	31.5	31.5	31.5	
Calverton Solar Energy Center [PV]	К	22.9	22.9	22.9	
Total		54.4	54.4	54.4	

Attachment G3

Solar Units Not Modeled

Solar				
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability vs. CRIS
Shoreham Solar [PV]*	К	24.9	0.0	0.0
Total		24.9	0.0	0.0

*Unit provides power at the distribution rather than at the transmission level.

Attachment G4

LFG Units Modeled

LFG					
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability VS CRIS	
CHAFEE [IC]	A	6.4	6.4	6.4	
Model City Energy LFGE [IC]	А	5.6	5.6	5.6	
Modern LFGE [IC]	A	6.4	6.4	6.4	
Hyland LFGE [IC]	В	4.8	4.8	4.8	
Mill Seat [IC]	В	6.4	6.4	6.4 2.0 2.1	
Broome 2 [IC]	С	2.0 2.1	2.0		
Broome LFGE [IC]	С		2.1		
High Acres Group [IC] (23767)	С	C 9.6 9.6		9.6	
Ontario LFGE [IC]	С	11.2	11.2	11.2 17.6 6.4 6.4	
Seneca Energy Group [IC] (23797)	С	17.6	17.6		
Clinton LFGE [IC]	D	6.4	6.4		
DANC LFGE [IC]	E	6.4	6.4		
Madison County LFGE [IC]	E	1.6	1.6	1.6	
Oneida-Herkimer LFGE [IC]			3.2	3.2	
Colonie LFGTE [IC]	Colonie LFGTE [IC] F		6.4	6.4	
Fulton County Landfill [IC]	F	3.2	3.2	3.2	
Totals		99.3	99.3	99.3	

Attachment G5

LFG Units Not Modeled

LFG					
Resource	Zone	CRIS (MW)	Summer Capability (MW)	Lesser of Summer Capability VS CRIS	
Albany LFGE	F	4.5	5.6	4.5	
Total		4.5	5.6	4.5	

Assumption Matrix History

Date	Ver	Preliminary Base Case	Date	Ver	Final Base Case
2/2/22	V0.0	Preliminary assumptions without attachments.			