

Preliminary Results on Maintaining Operating Reserve at Load Shedding

Yvonne Huang ICAP Market Operations

ICS Meeting # 258

March 3, 2022

Background

- For the 2023 IRM study, the NYISO proposes the modeling change to maintain operating reserves ("OR") during load shedding events
 - Specifically, the NYISO proposes to maintain some level of 10-minute OR which is capable of accommodating system volatility during load shedding
- It is expected that the amount and the locations of how the 10-minute OR are maintained will have different impacts on the IRM
 - The current IRM model includes 1,310 MW of 10-minute OR
- The NYISO conducted preliminary analysis, maintaining three different levels of 10minute OR at load shedding
 - $327.5 \text{ MW} = \frac{1}{4} \text{ of the total 10-minute OR}$
 - 500 MW
 - 655 MW = $\frac{1}{2}$ of the total 10-minute OR

Methodology

- Currently 10-minute OR is modeled as Emergency Operating Procedure ("EOP") step 8 in the IRM, which MARS will count on to address system shortages.
- The NYISO deducted the three MW levels of 10-minute OR in the EOP step 8, reflecting the reduced amount of OR being available during load shedding. Three allocation methods were also studied.

Current 10-Minute OR EOP 8			Maintain <u>327.5 MW</u> OR at Load Shedding			Maintain <u>500 MW</u> OR at Load Shedding			Maintain <u>655 MW</u> OR at Load Shedding		
Zone	9	MW (%)	Current Allocation	All Upstate	All Downstate	Current Allocation	All Upstate	All Downstate*	Current Allocation	All Upstate	All Downstate*
Upstate	NY_F	518 (40%)	129.5	203.9	0	197.7	311.3	13.7	259.0	407.8	110.2
	NY_G	314 (24%)	78.5	123.6	0	119.8	188.7	8.3	157.0	247.2	66.8
Downstate	NY_J	358 (37%)	89.5	0.0	245.3	136.6	0.0	358.0	179.0	0.0	358.0
	NY_K	120 (9%)	30.0	0.0	82.2	45.8	0.0	120.0	60.0	0.0	120.0
<u>TOTAL</u>		<u>1310</u>	<u>327.5</u>		<u>500</u>		<u>655</u>				

*Existing 10-minute OR is not sufficient in downstate and additional OR will need to be maintained from upstate

Preliminary Results for OR @ 327.5 MW

 The IRM impacts are parametric results. Parametric adjustment methods vary depending on where the 327.5 MW OR is maintained.

		Maintain 327.5 MW OR at Load Shedding				
Metrix	FBC with Neptune Outage	Current Allocation	All Upstate	All Downstate		
		A-K Adjustment	A-F Adjustment	G-K Adjustment		
IRM	19.60%	20.66%	20.57%	21.03%		
J_LCR	80.70%	81.50%	80.70%	82.74%		
K_LCR	99.80%	100.81%	99.80%	102.36%		
NYBA EOP	38.4	33.5	29.5	38.2		

Preliminary Results for OR @ 500 MW

 The IRM impacts are parametric results. Parametric adjustment methods vary depending on where the 500 MW OR is maintained.

		Maintain 500 MW OR at Load Shedding				
Metrix	FBC with Neptune Outage	Current Allocation	All Upstate	All Downstate G-K Adjustment		
		A-K Adjustment	A-F Adjustment			
IRM	19.60%	21.28%	21.22%	21.78%		
J_LCR	80.70%	81.98%	80.70%	83.80%		
K_LCR	99.80%	101.41%	99.80%	103.70%		
NYBA EOP	38.4	30.9	24.8	38.1		

Preliminary Results for OR @ 655 MW

 The IRM impacts are parametric results. Parametric adjustment methods vary depending on where the 655 MW OR is maintained.

		Maintain <u>655 MW</u> OR at Load Shedding				
Metrix	FBC with Neptune Outage	Current Allocation	All Upstate	All Downstate		
		A-K Adjustment	A-F Adjustment	G-K Adjustment		
IRM	19.60%	21.84%	21.93%	22.09%		
J_LCR	80.70%	82.40%	80.70%	84.25%		
K_LCR	99.80%	101.94%	99.80%	104.26%		
NYBA EOP	38.4	28.7	20.7	38.1		

Observation and Next Step

- Maintaining additional OR at load shedding will proportionally increase the IRM
 - Since OR is modeled without EFORd, for 1 MW OR maintained, >1 MW of ICAP will need to be added to the system
 - Zonal allocations between upstate and downstate have ~0.5% impact on the IRM
- Zonal allocation will impact the preliminary LCRs are directly
 - Tan45 process may to some extend soften the impacts on LCRs
- Having the OR maintained upstate and increasing upstate ICAP, will alleviate issues in Zone A/B, hence reducing the EOP activations.
- Next Step:
 - Select a MW level for maintaining OR and an allocation method to proceed with a Tan45 assessment. Recommend selecting the 327.5 MW OR with current NYCA allocation.
 - Consider combining other modeling changes, such as adopting GE ELR model for the Tan45 assessment

Questions?

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

