Draft ICS work product, for discussion purposes Only -<u>2018</u> Sensitivity Case Results

Case	Description	IRM (%)	NYC (%)	LI (%)		
0	Final Base Case	18.2	80.7	103.2		
	This is the Base Case technical results derived from knee of the IRM-LCR curve. All other sensitivity cases are performed off of this run					
1	NYCA Isolated	25.6	85.9	109.9		
	This case examines a scenario where the NYCA system is isolated and receives no emergency assistance from neighboring control areas (New England, Ontario, Quebec, and PJM). UDRs are allowed.					
2	No Internal NYCA Transmission Constraints (Free Flow System)	16.2	NA	NA		
	This case represents the "Free-Flow" NYCA case where internal transmission constraints are eliminated and measures the impact of transmission constraints on statewide IRM requirements.					
3	No Load Forecast Uncertainty	11.0	75.6	96.7		
	This scenario represents "perfect vision" for 2017 peak loads, assuming that the forecast peak loads for NYCA have a 100% probability of occurring. The results of this evaluation help to quantify the effects of weather on IRM requirements.					
4	Remove all wind generation	14.5	80.7	103.2		
	Freeze J & K at base levels and adjust capacity in the upstate zones. This shows the impact that the wind generation has on the IRM requirement.					
5	No SCRs & no EDRPs	15.3	77.9	103.0		
	Shows the impact of SCRs and EDRPs on IRM.					
6	Remove CPV Valley Energy Center	18.5	81.3	103.7		
	A full tan 45 curve case based on removing the addition of CPV-VEC (678 MW) from the base case.					
7	Limit Emergency Assistance from PJM to all of NYCA to 1500 MW	18.2	80.7	103.2		
	This case uses a grouped interface of all PJM to NYCA import ties and restricts the grouping to a limit of 1500 MW					
8	Model 2,000 MW of additional Wind resources (adjusted back to 0.100 LOLE by using zones A-F only).	22.7	80.7	103.2		

Case	Description	IRM (%)	NYC (%)	LI (%)		
	Add hypothetical Wind capacity to the existing fleet of wind generation to the order of 2,000 MW. This would increase the NYCA participating wind fleet to 3,733 MW.					
9	Model 2,000 MW of additional bulk Solar resources	22.8	79.7	105.6		
	Add hypothetical Solar capacity to the existing fleet of bulk Solar generations to the order of 2,000 MW. This would increase the NYCA participating bulk Solar fleet to 2,032 MW.					
10	Model 2,000 MW of Wind and 2,000 MW of Solar additions (4,000 MW total). <u>Perform tan 45.</u>	26.3	80.8	105.6		
	Add hypothetical resources totaling 4,000 MW from the above cases 9 and 10. Perform a tan 45 curve and analysis.					
11	Model 2,000 MW of Wind and 2,000 MW of Solar additions (4,000 MW total).	28.2	79.3	105.0		
	Add hypothetical resources totaling 4,000 MW from the above cases 9 and 10. Perform this case using the standard sensitivity methodology.					
12	Remove the 3500 MW EA Limit into NYCA	18.0	80.5	103.0		
	Remove the 3500 MW Emergency Assistance grouped limit entering NYCA from its neighbors. UDRs remain in New York.					
13	Model a 500 MW Locality export to New England	N/A	N/A	N/A		
	Given time, model a capacity sale of 500 MW from zone G to NY's Western Mass and Connecticut zones.					
14	Retire the Selkirk Units	18.3	80.7	103.2		
	Retire the two Selkirk units and return to a 0.100 LOLE by adjusting capacity in zones A-F.					
15	Retire the Binghamton BOP Unit	18.2	80.7	103.2		
	Retire the Binghamton BOP unit and return to a 0.100 LOLE by adjusting capacity in zones A-F.					

Draft ICS work product, for discussion purposes Only -2018 Sensitivity Case Results