Alternative Methods for Determining LCRs

Zachary Stines

Associate Market Design Specialist

Installed Capacity Working Group

May 11, 2017, NYISO

Agenda

- Phase 1: Proof of Concept
 - Updates to the Optimization
 - Initial Sensitivities Results
- Phase 2: Refining Methodology
 - Transmission Security
 - Cost curves
- Next Steps
 - 2017 Project Development
- Questions

Phase 1: Proof of Concept

Updates to Optimization

- Altered formulation of LOLE constraint within optimization tool
 - Linear versus Log-Linear
- Reset solver with a smaller initial step size after a low initial tolerance has been met

Updates Impact on Optimized Base Case

Scenario	Zone J LCR (%)	Zone K LCR (%)	G-J LCR (%)	Cost (million)
Optimized Base Case (Old)	78.1	104.5	92.2	\$4,370.8
Optimized Base Case (Updated)	77.5	107.0	91.0	\$4,366.4
Δ in Base Cases	0.6	-2.5	1.2	\$4.4

[•]Updated Base Case results in a lower cost, but slightly different LCRs for the localities

Initial Sensitivities

Entry/exit of Capacity

- Capacity addition/subtraction in Zone GHIJ
- Capacity addition/subtraction in Zone J
- Capacity addition/subtraction in Zone K
- Capacity addition/subtraction in Rest of State
- Capacity addition/subtraction in G with Lower Bound on Zone J

Changes in Net CONE

- Increase and decrease GHIJ Net CONE
- Increase and decrease Zone J Net CONE
- Increase and decrease Zone K Net CONE
- Increase and decrease NYCA Net CONE
- Increase in all Locality Net CONE

Changes in Transmission Capability

Increase UPNY-SENY

Methodologies used in Sensitivities

Optimization Methodology

- Uses GE Optimization tool and NYISO final 2017-2018 Capability Year LCR base case
- Optimized the 3 Localities' LCRs while maintaining the 2017 NYSRC approved IRM of 18% subject to a LOLE constraint of 0.1 Days/year

Current LCR Methodology

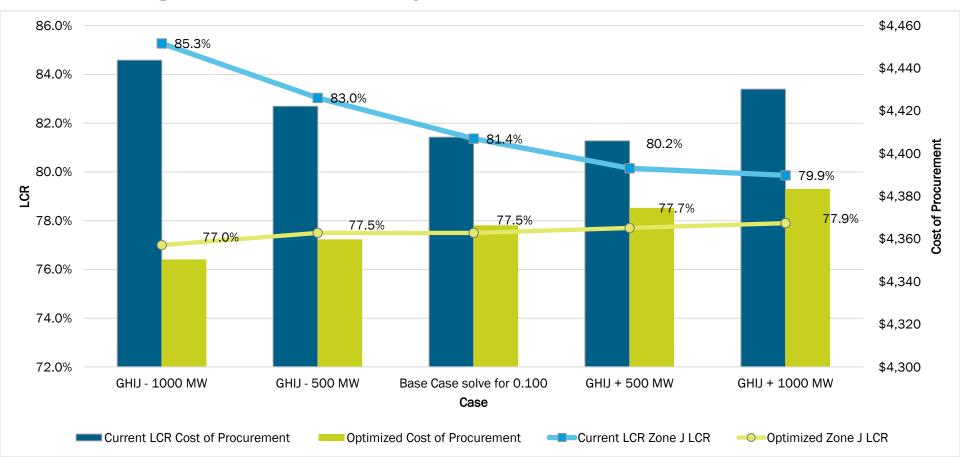
- Uses NYISO LCR Calculation Process¹
- Not a full Unified Method (i.e., Tan45)
- Maintains the NYSRC approved IRM of 18%
- Used to provide a simple comparison

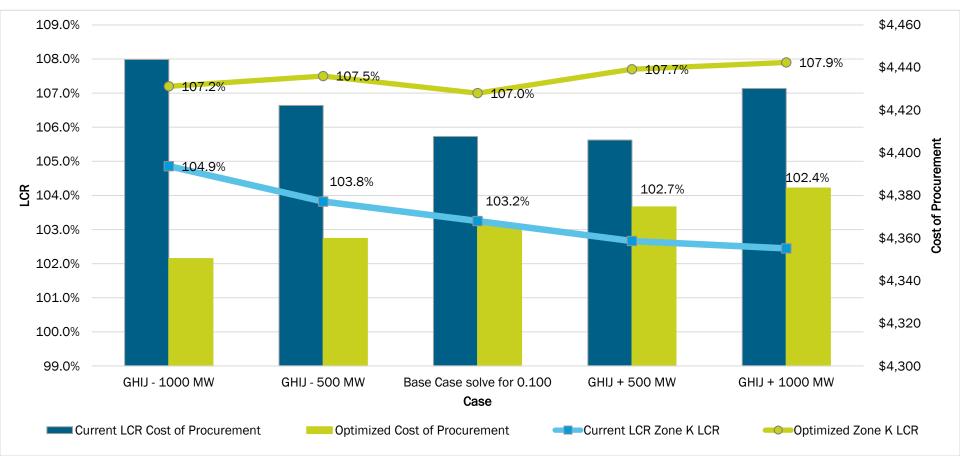
http://www.nyiso.com/public/webdocs/markets_operations/market_data/icap/Reference_Documents/LCR_Calculation_Process/LCR%20Calculation%20Process%2012_13_13.pdf%.

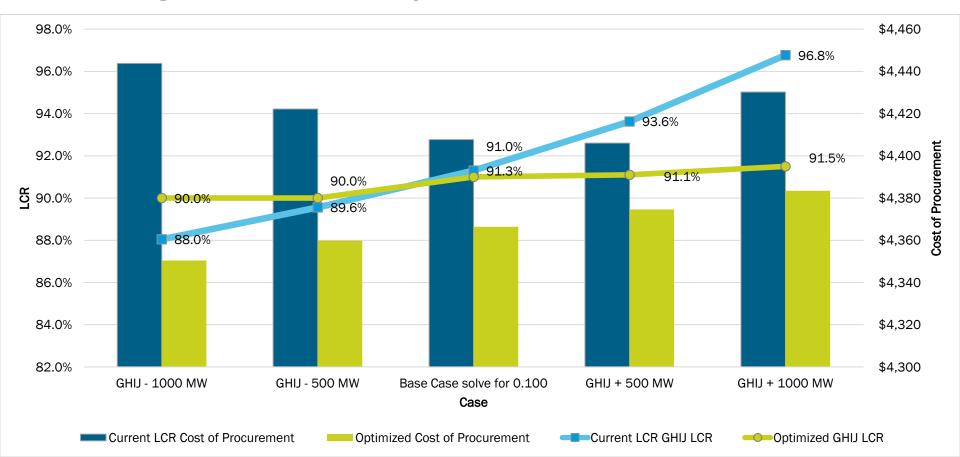
¹ This process is available at

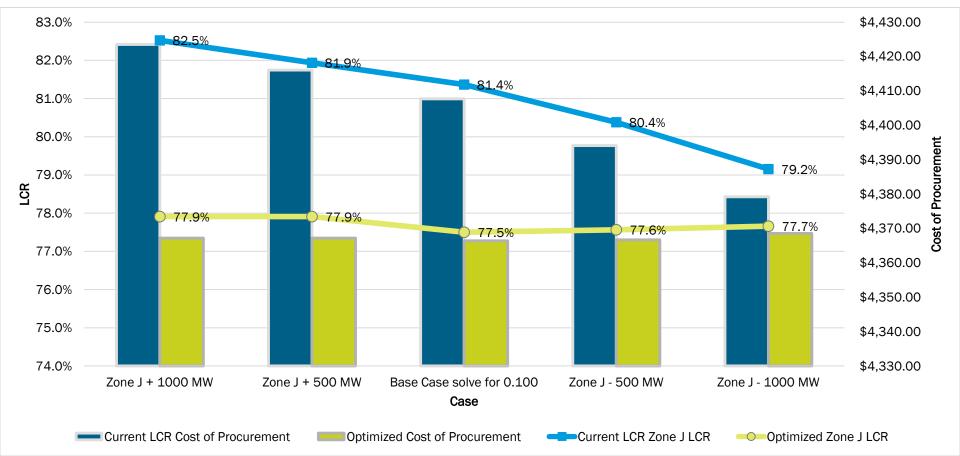
Current LCR Methodology Base Case

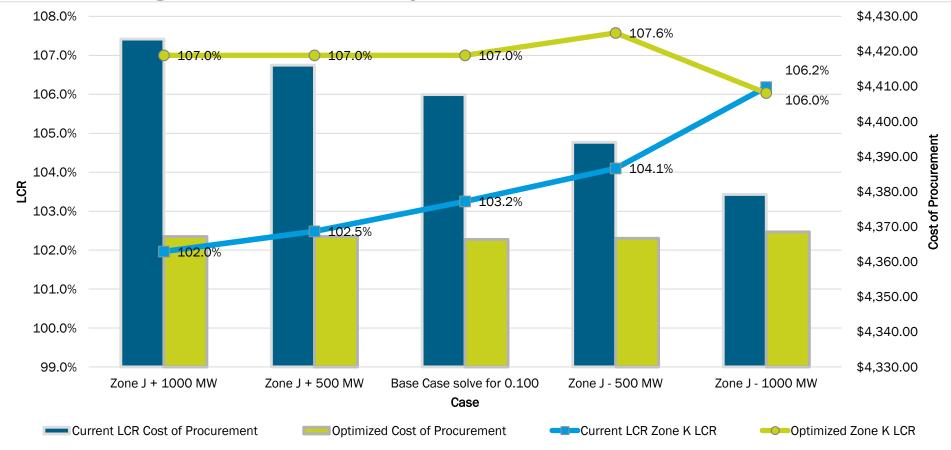
- The NYISO final 2017-2018 Capability Year LCR base case was solved to a LOLE of 0.1 days/year with the NYSRC approved IRM of 18.0%
- The resulting base case will allow for a direct comparison with the optimized methodology and the simplified current LCR methodology

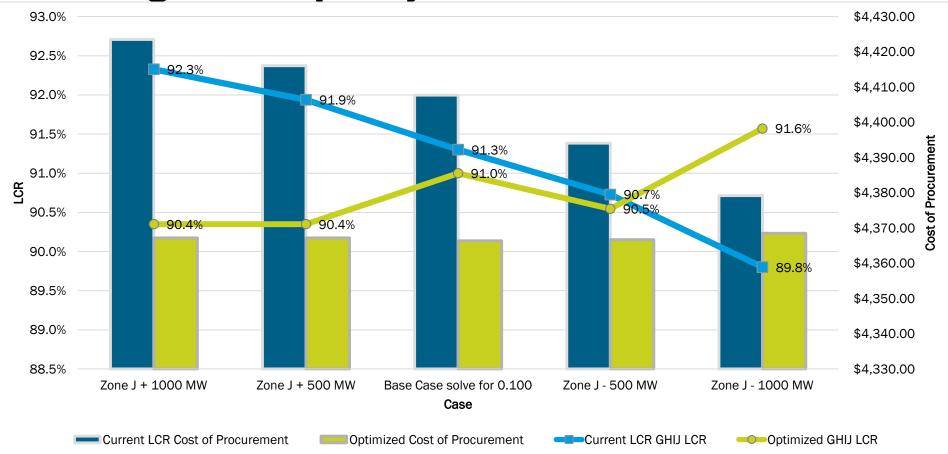

Scenario	Zone J LCR (%)	Zone K LCR (%)	G-J LCR (%)	Cost (million)
Base Case (Current LCR)	81.4	103.2	91.3	\$4,407.7

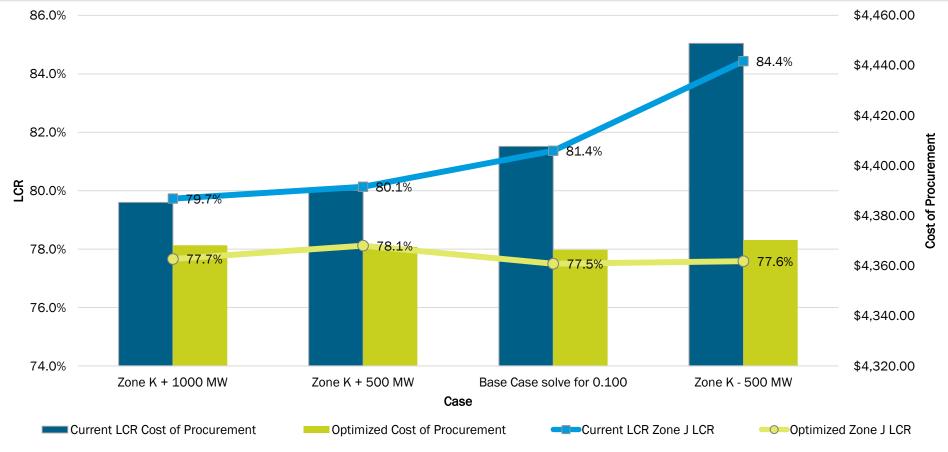

Changes in Capacity Sensitivities

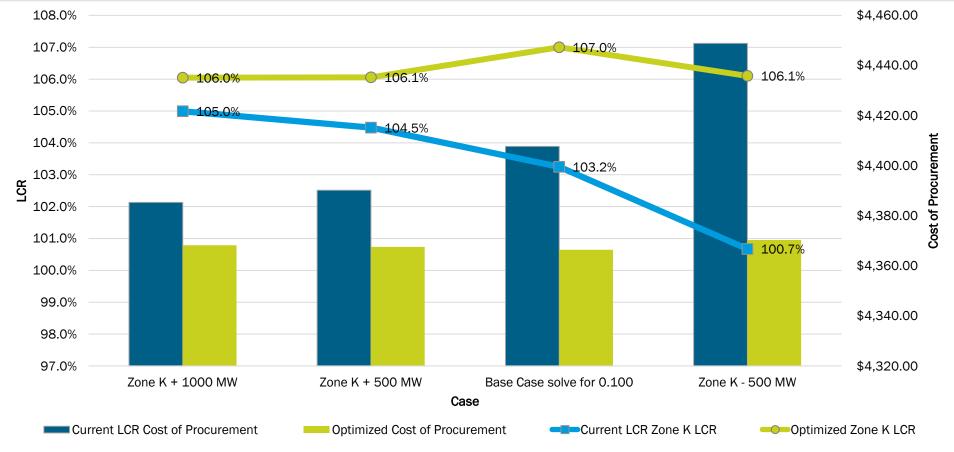

Changes to Capacity in GHIJ: Zone J LCR

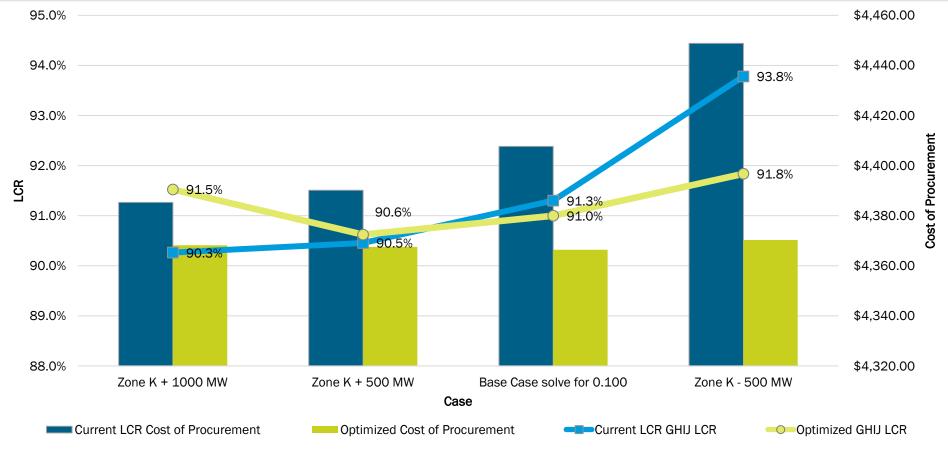

Changes to Capacity in GHIJ: Zone K LCR

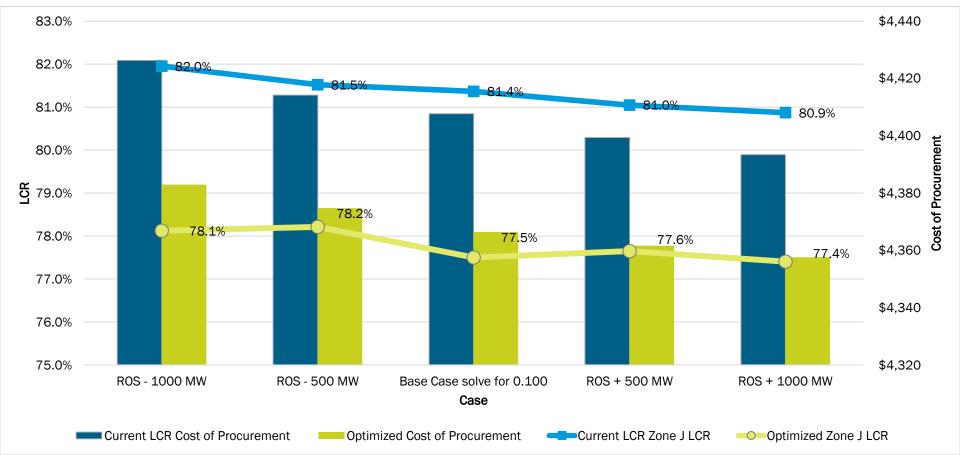

Changes to Capacity in GHIJ: GHIJ LCR

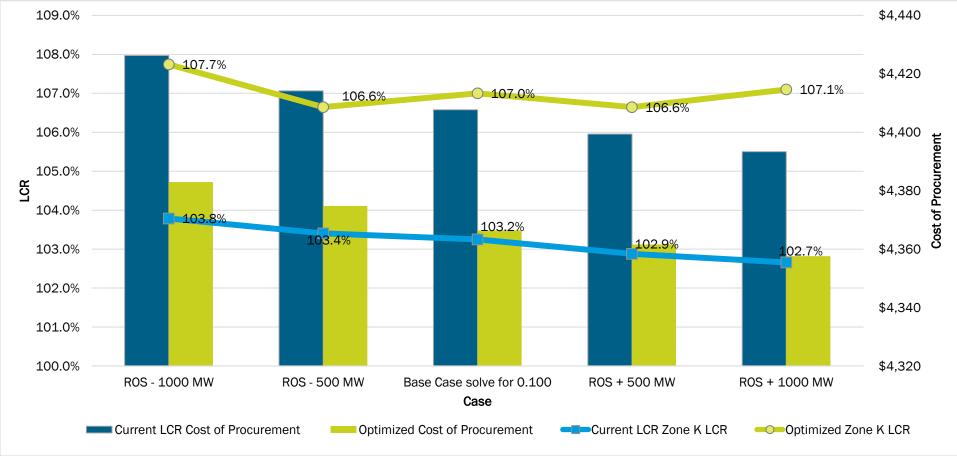

Changes to Capacity in J: Zone J LCR

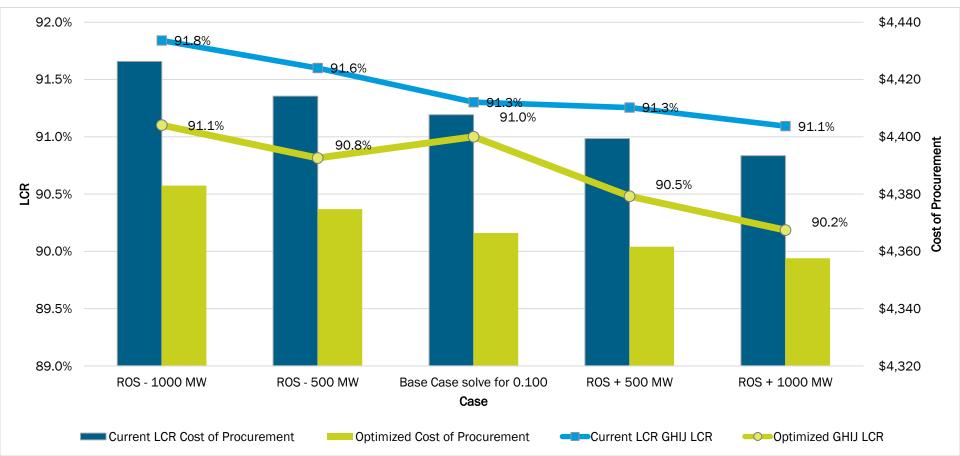

Changes to Capacity in J: Zone K LCR


Changes to Capacity in J: GHIJ LCR


Changes to Capacity in K: Zone J LCR


Changes to Capacity in K: Zone K LCR


Changes to Capacity in K: GHIJ LCR


Changes to Capacity in ROS: Zone J LCR

Changes to Capacity in ROS: Zone K LCR

Changes to Capacity in ROS: GHIJ LCR

Changes in Capacity: Comparative Results

			•			
Scenario	Δ Optimized LCR from Optimized Base Case (%)			Δ Current LCR case from Current LCR Base Case (%)		
	Zone J	Zone K	G-J	Zone J	Zone K	G-J
+500 MW in GHIJ	0.2	0.7	0.1	-1.3	-0.5	2.3
- 500 MW in GHIJ	0.0	0.5	-1.0	1.6	0.6	-1.7
+500 MW in J	0.4	0.0	-0.6	0.5	-0.7	0.6
-500 MW in J	0.1	0.6	-0.5	-1.0	0.9	-0.6
+500 MW in K	0.6	-0.9	-0.4	-1.3	1.3	-0.8
-500 MW in K	0.1	-0.9	0.8	3.0	-2.5	2.5
+500 MW in ROS	0.1	-0.4	-0.5	-0.4	-0.3	-0.0
-500 MW in ROS	0.7	-0.4	-0.2	0.1	0.2	0.3
Average Absolute Δ from Base	0.3	0.6	0.5	1.2	0.9	1.1

Changes in Capacity: Comparative Results

			•			
Scenario	Δ Optimized LCR from Optimized Base Case (%)			Δ Current LCR case from Current LCR Base Case (%)		
o o o n a n o	Zone J	Zone K	G-J	Zone J	Zone K	G-J
+1000 MW in GHIJ	0.4	0.9	0.5	-1.5	-0.8	5.5
- 1000 MW in GHIJ	-0.5	0.2	-1.0	3.9	1.7	-3.3
+1000 MW in J	0.4	0.0	-0.6	1.1	-1.2	1.0
-1000 MW in J	0.2	-1.0	0.6	-2.2	3.0	-1.5
+1000 MW in K	0.2	-1.0	0.5	-1.7	1.8	-1.0
+1000 MW in ROS	-0.1	0.1	-0.8	-0.5	-0.5	-0.2
-1000 MW in ROS	0.6	0.7	0.1	0.6	0.6	0.5
Average Absolute Δ from Base	0.3	0.6	0.6	1.6	1.4	1.9

Changes in Capacity: Cost Comparison

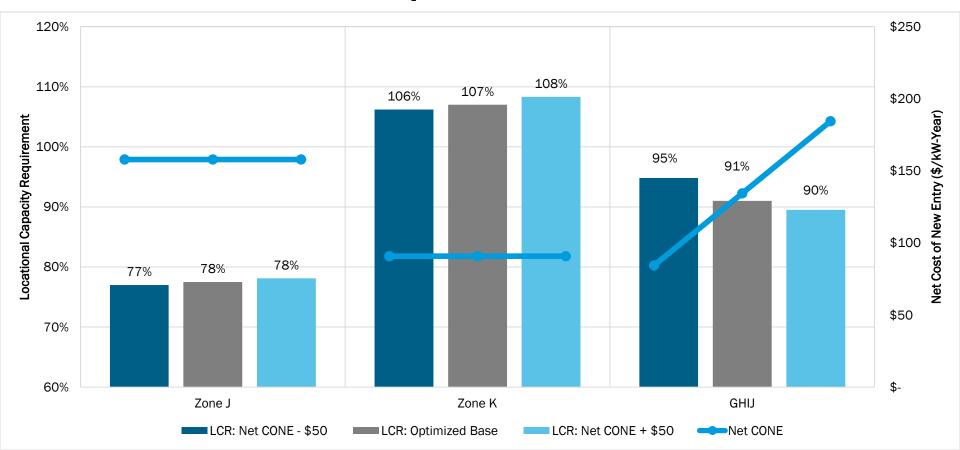
Scenario	Current LCR Methodology Cost (million)	Optimized LCR Methodology Cost (million)	Δ Cost (million)
Base Case	\$4,407.7	\$4,366.4	\$41.3
GHIJ + 500 MW	\$4,406.0	\$4,374.6	\$31.4
GHIJ - 500 MW	\$4,422.2	\$4,359.8	\$62.4
Zone J + 500 MW	\$4,416.0	\$4,367.2	\$48.9
Zone J - 500 MW	\$4,394.1	\$4,366.7	\$27.4
Zone K + 500 MW	\$4,390.2	\$4,367.6	\$22.6
Zone K - 500 MW	\$4,448.8	\$4,370.3	\$78.5
ROS + 500 MW	\$4,399.4	\$4,361.6	\$37.7
ROS - 500 MW	\$4,414.2	\$4,374.8	\$39.4

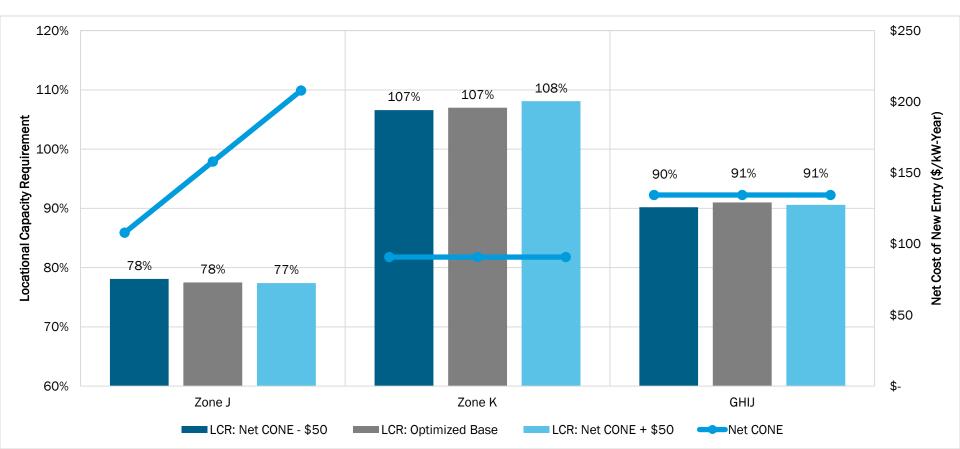
- Cost presented is the solution cost from the optimization objective function
- The objective function represents the cost of capacity procurement at the given requirement

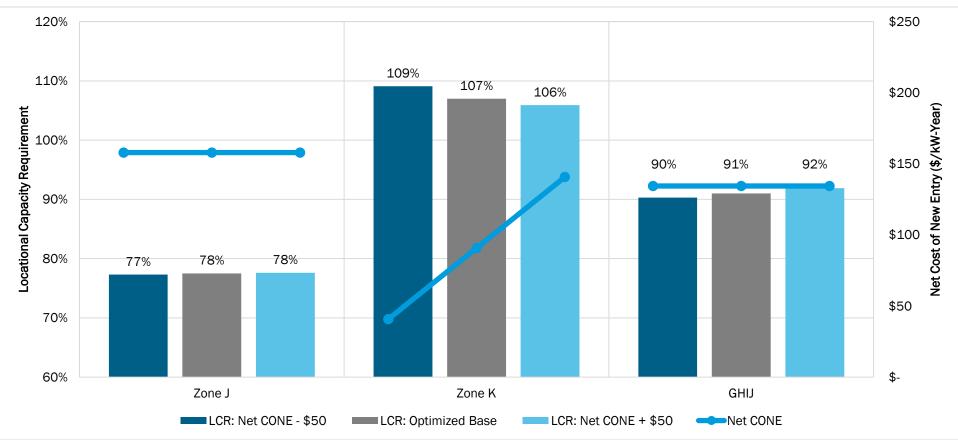
Changes in Capacity: Cost Comparison

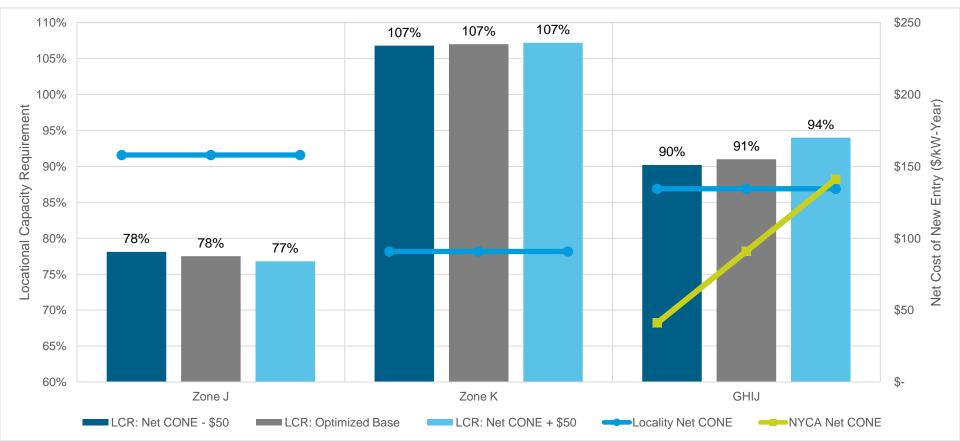
Scenario	Current LCR Methodology Cost (million)	Optimized LCR Methodology Cost (million)	Δ Cost (million)
Base Case	\$4,407.7	\$4,366.4	\$41.3
GHIJ + 1000 MW	\$4,430.2	\$4,383.5	\$46.7
GHIJ - 1000 MW	\$4,443.8	\$4,350.4	\$93.4
Zone J + 1000 MW	\$4,423.5	\$4,367.2	\$56.3
Zone J - 1000 MW	\$4,379.2	\$4,368.5	\$10.7
Zone K + 1000 MW	\$4,385.3	\$4,368.2	\$17.1
ROS + 1000 MW	\$4,393.4	\$4,357.6	\$35.8
ROS - 1000 MW	\$4,426.3	\$4,383.0	\$43.3

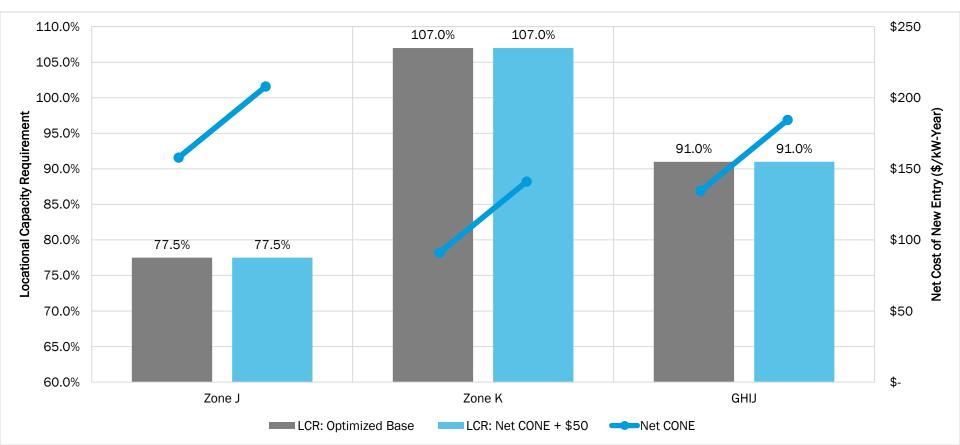
Changes in Capacity: Conclusions


- The optimized methodology reduces volatility in comparison to the current LCR methodology when there are changes in capacity
- Secondary effects observed in the optimization will be investigated in Phase 2


Changes in Net CONE Sensitivities


Net CONE Curves: +/- \$50 GHIJ


Net CONE Curves: +/- \$50 Zone J


Net CONE Curves: +/- \$50 Zone K

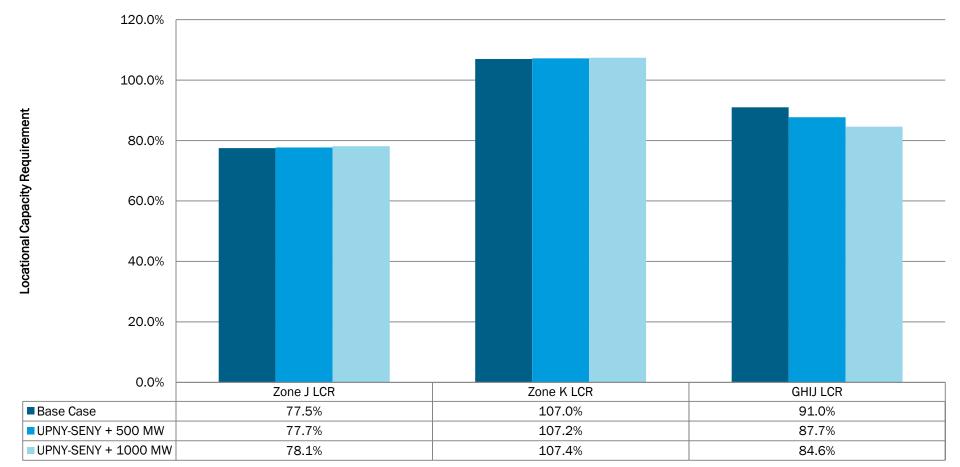
Net CONE Curves: +/- \$50 NYCA

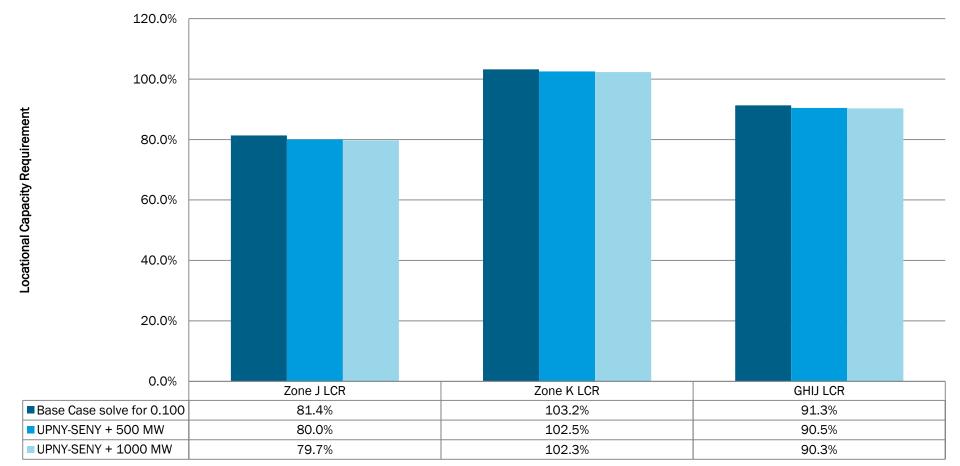
Net CONE Curves: +\$50 All Zones

Changes in Net CONE: Cost Comparison

Scenario	Current LCR Methodology Cost (million)	Optimized LCR Methodology Cost (million)	Δ Cost (million)
Base Case	\$4,413.7	\$4,366.4	\$47.3
GHIJ Net CONE + \$50	\$5,148.5	\$5,090.3	\$58.2
GHIJ Net CONE - \$50	\$4,154.4	\$4,079.8	\$74.6
Zone J Net CONE + \$50	\$4,889.3	\$4,818.7	\$70.6
Zone J Net CONE - \$50	\$3,938.1	\$3,911.8	\$26.3
Zone K Net CONE + \$50	\$5,170.1	\$5,109.2	\$60.9
Zone K Net CONE - \$50	\$4,132.8	\$4,073.7	\$59.1
NYCA Net CONE + \$50	\$5,831.1	\$5,747.2	\$83.9
NYCA Net CONE - \$50	\$3,471.9	\$3,424.9	\$47.0
All Net CONE + \$50	\$6,371.2	\$6,323.9	\$47.3

Changes in Net CONE: Conclusions


- The sensitivities tested extreme changes (i.e., between 30% and 55% change in Net CONE)
- The optimized LCR responded intuitively to the changes in Net CONE (i.e., increase in Net CONE in most instances causes a reduction in LCR)
- The Net CONE can have an impact on the final optimized LCRs
- This places an emphasis on developing robust methodology for determining the cost curves


Changes in Transmission Sensitivities

Changes in Transmission: Optimized Methodology

Changes in Transmission: Current Methodology

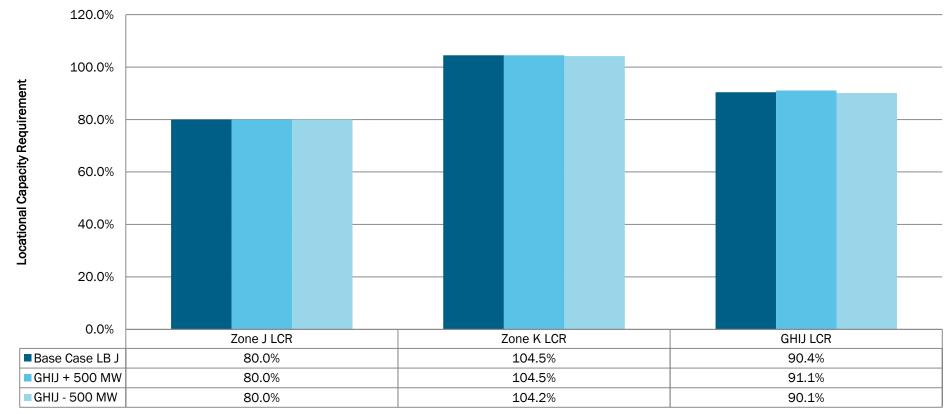
Changes in Transmission: Conclusions of Simple Analysis

- There are limitations to this simple analysis since changes in UPNY-SENY transmission would likely result in a change in the IRM
- The conclusions based on the simple analysis presently are:
 - UPNY-SENY reduces amount of optimal capacity required in GHIJ, but does not impact the amount for Zone J
 - The Zone J LCR is minimized to its optimal level in the Base Case (as a result of constraints south of UPNY-SENY)
 - Future sensitivity will seek to confirm that the optimal Zone J LCR is dependent on the downstream constraints by increasing Dunwoodie South limit to observe if the optimal Zone J LCR decreases

Phase 1: Conclusions and Next Steps

- Perform sensitivities to assist in the understanding of any secondary effects observed in changes in generation sensitivities
- Work to potentially refine methodology to address these secondary effects
- Develop a robust methodology for determining cost curves that minimizes volatility
- Run a full Tan45 process for a few specific sensitivities to increase the understanding of how the current process and optimization responds
- While cost savings are only 1-2%, the process has numerous other benefits
 - Stability, more robust, intuitive, etc.

Phase 2: Refining Methodology



Transmission Security

- The NYISO continues to work to develop values for the lower bounds
- Sensitivities were performed to show how the optimization could incorporate lower bounds
 - Incorporated an arbitrary lower bound for Zone J of 80%

Changes in Generation: Optimized Methodology with Lower Bound

Lower Bound Comparison of Costs

Scenario	Optimized LCR with Lower Bound Cost (million)	Current LCR Methodology Cost (million)	Δ Cost (million)	
Base Case	\$4,387.7	\$4,407.7	\$20.00	
+500 MW in GHIJ	\$4,394.6	\$4,406.0	\$11.40	
-500 MW in GHIJ	\$4,381.7	\$4,422.2	\$40.50	

Lower Bound Conclusions

- The optimization with a lower bound still results in a lower cost when compared to the current methodology
- The optimization still reduces volatility when a lower bound is incorporated

Cost Curves

- Phase 1 simple sensitivities only investigated how the magnitude of the cost curves impact the optimization
- Phase 2 will perform analysis and sensitivities to:
 - Investigate the impact of cost curves' shape on optimization
 - Develop a robust methodology for generating the curves
 - Seek to reduce any unnecessary volatility from cost curves

Next Steps

Next Steps

- The NYISO will consider input received during today's ICAP Working Group meeting
- Any additional comments sent to <u>deckels@nyiso.com</u> will be considered
- The NYISO will return to a future ICAPWG meeting to discuss its progress and adjustments to the plan after considering comments or results

2017 Project Development

<u>Stage</u>	<u>Objective</u>	Specific Topics:	
Proof of Concept	Demonstrate alternative methodology in relation to guiding principles (i.e., least cost, stability, robust, predictability)	Generation +/- Unit net CONE +/- Transmission +/-	
Refine Methodology	Modify the alternative method to ensure that all aspects have a purpose and are being performed as a result of sound market and engineering principles	Unit net CONE curves Potential Bounds Modeling methodology	
Market Simulations	Simulate realistic market situations to demonstrate performance of methodology	Changes in resources Topological changes Locality configurations	
Defining Process	Develop a process for the methodology that ensures guiding principles are being achieved over time	Develop process of method Process timeline Transition methods	
Demonstrating Market Benefits	Demonstrate the methodology results in market benefits and resolve any issues that arise from its implementation	LOLE Criterion Consumer impact Multiyear simulation Cost allocation	
Final Market Design	Summarize all findings and develop a final market design for implementation	Develop final market design	

Questions?

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

Appendix

Changes in Capacity: 500 ww					
e a mania	Optimized LC	R (%)		urrent LCR hodology (
cenario					

G-J

91.0

91.1

90.0

90.4

90.5

90.6

91.8

90.5

90.8

Zone K

107.0

107.7

107.5

107.0

107.6

106.1

106.1

106.6

106.6

Zone J

77.5

77.7

77.5

77.9

77.6

78.1

77.6

77.6

78.2

Zone K

103.2

102.7

103.8

102.5

104.1

104.5

100.7

102.9

103.4

Zone J

81.4

80.2

83.0

81.9

80.4

80.1

84.4

81.0

81.5

%) G-J

91.3

93.6

89.6

91.9

90.7

90.5

93.8

91.3

91.6

411

Cost (million)

\$4,374.6

\$4,359.8

\$4,367.2

\$4,366.7

\$4,367.6

\$4,370.3

\$4,361.6

\$4,374.8

Current LCR Optimized \$4,366.4

Cost

(million)

\$4,407.7

\$4,406.0

\$4,422.2

\$4,416.1

\$4,394.1

\$4,390.2

\$4,448.8

\$4,399.4

\$4,414.2

- 500 MW in G

+500 MW in J

-500 MW in J

+500 MW in K

-500 MW in K

+500 MW in ROS

500 MW in ROS

S

- Base Case +500 MW in G

Changes in Canacity: 1000 MW

Changes in Capacity. 1000 MW					
Cooperio	Optimized LCR (%)	Current LCR Methodology (%)			
Scenario		Zono			

107.0

107.9

107.2

107.0

106.0

106.0

107.1

107.7

77.5

77.9

77.0

77.9

77.7

77.7

77.4

78.1

Base Case

+1000 MW in G

1000 MW in G

+1000 MW in J

-1000 MW in J

+1000 MW in K

+1000 MW in ROS

-1000 MW in ROS

Zone Zone K Zone J G-J Zone K

91.0

91.5

90.0

90.4

91.6

91.5

90.2

91.1

81.4

79.9

85.3

82.5

79.2

79.7

80.9

82.0

103.2

102.4

104.9

102.0

106.2

105.0

102.7

103.8

G-J

91.3

96.8

0.88

92.3

89.8

90.3

91.1

91.8

Optimized Cost (million)

\$4,366.4

\$4.383.5

\$4,350.4

\$4,367.2

\$4,368.5

\$4,368.2

\$4,357.6

\$4,383.0

Current LCR

Cost

(million)

\$4,407.7

\$4,430.2

\$4,443.8

\$4,423.5

\$4,379.2

\$4,385.3

\$4,393.4

\$4,426.3

Changes in Net CONF

Zone K

107.0

108.3

106.2

108.1

106.6

105.9

109.1

107.2

106.8

107.0

G-J

91.0

89.5

94.8

90.6

90.2

91.9

90.3

94.0

90.2

91.0

Olianges in Net Cont					
Caararia	Optimized LCR (%)	N			
Scenario					

Zone J

77.5

78.1

77.0

77.4

78.1

77.6

77.3

76.8

78.1

77.5

Current LCR

Zone J

81.5

81.5

81.5

81.5

81.5

81.5

81.5

81.5

81.5

81.5

Methodology (%)

Zone K

103.5

103.5

103.5

103.5

103.5

103.5

103.5

103.5

103.5

103.5

G-J

91.5

91.5

91.5

91.5

91.5

91.5

91.5

91.5

91.5

91.5

Optimized Cost (million) \$4,366.4

\$5,090.3

\$4,079.8

\$4,818.7

\$3,911.8

\$5,109.2

\$4,073.7

\$5,747.2

\$3,424.9

\$6,323.9

Current LCR

Cost

(million)

\$4,413.7

\$5,148.5

\$4,154.4

\$4,889.3

\$3,938.1

\$5,170.1

\$4,132.8

\$5,831.1

\$3,471.9

\$6,371.2

Base Case +\$50 GHIJ

-\$50 GHIJ

+\$50 Zone J

-\$50 Zone J +\$50 Zone K

+\$50 NYCA

+\$50 All Zones

-\$50 Zone K

-\$50 NYCA

Changes in Transmission

Scenario	Optim	Optimized LCR (%)		Current LCR Methodology (%)			Optimized Cost	Current LCR Cost
	Zone J	Zone K	G-J	Zone J	Zone K	G-J	(million)	(million)
Base Case	77.5	107.0	91.0	81.4	103.2	91.3	\$4,366.4	\$4,413.7
UPNY-SENY+500 MW	77.7	107.2	87.7	80.0	102.5	90.5	\$4,342.1	\$4,369.9
UPNY-SENY+1000 MW	78.1	107.4	84.6	79.7	102.3	90.3	\$4,325.6	\$4,362.4

