

Evaluating load shapes in the IRM study

Nathaniel Gilbraith

NYISO

NYSRC – Installed Capacity Subcommittee Meeting #218

April 3, 2019 NYISO, Rensselaer, NY

NEW YORK INDEPENDENT SYSTEM OPERATOR

DRAFT – FOR DISCUSSION PURPOSES ONLY

©COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED

Background

- ICS listed an evaluation of load shapes on the action items for NYSRC ICS Meeting #203 (1/3/2018)
 - The evaluation was identified as a multi-year effort
- The NYISO presented load shape materials at two additional meetings in 2018 (2/27 and 6/27)
 - These presentations did not evaluate alternate methods, but provided additional background and identified potential research questions

┶┷┵

- ICS listed an evaluation of load shapes on the action items for NYSRC ICS Meeting #215 (1/2/2019)
- Some ICS stakeholders sought a higher prioritization and an expedited evaluation of load shapes
 - Last meeting (2/26/2019), the NYISO summarized the limited ICS discussions in 2018 including that a specific research topic or method was not selected by the ICS for further evaluation
 - As a result, the load shape evaluation remains in the early stages of the multi-year effort, and requires the ICS and the ISO to identify the relevant questions and/or method to evaluate
- The NYISO committed to return this ICS meeting with a more granular schedule for this multi-year effort

Load shapes – a brief history

- Prior to 2013: IRM and LCR studies were conducted using a single load shape the 2002 load shape
- 2013: The NYSRC adopted multiple load shapes for the 2014 IRM
 - <u>http://nysrc.org/pdf/MeetingMaterial/ICSMeetingMaterial/ICS_Agenda%20149/Multiple%20Load%20S</u> <u>hape%20%206_19_13%20Final.pdf</u>
 - Three load shapes were selected and assigned to load bins
 - 2006 load shape for the highest load bin
 - 2002 load shape for the second highest load bin
 - 2007 load shape for the third through seventh load bins
 - The NYISO and NYSRC balanced many factors when selecting the annual load shapes and assigning those load shapes to a given load bin, including
 - The possibility of creating load shapes that produce many LOLE events and set a relatively high IRM (possibly resulting in over-procurement) and
 - The possibility of creating load shapes that produce few LOLE events and set a relatively low IRM (possibly resulting in under-procurement and insufficient reliability)
 - The whitepaper recognized and considered the uncertainties (both from a data standpoint and from a forecasting standpoint) that exist when developing load shapes
- 2015: The IRM and LCR studies now count events in non-peak hours towards LOLE

Schedule for evaluating load shapes

1. Detailed review of existing load shape process

- Initial load shapes (e.g., 2002, 2006, 2007 load values, scaling method, load forecast uncertainty magnitude and probabilities (i.e., bins), and the assignment of load shapes to load bins
- Presentations by NYISO to ICS from April 2019 through September 2019
- 2. Identification of other processes that utilize load shapes
 - Summary of neighboring control areas' approaches to load forecasting
 - Presentation by NYISO to ICS by August 2019
 - Summary of other NYISO processes that utilize load shapes
 - Presentation by NYISO to ICS by September 2019

Schedule for evaluating load shapes, cont'd

- **3.** Identify topics for evaluation (this item can run concurrent with the items of the previous slide)
 - For example
 - How would scaling load shapes to match peak load (MW) and total energy (GWh) affect the IRM? Should load shapes with above forecast peak loads (i.e. LFU > 100%) be assigned above forecast energy?
 - How does the IRM change when the load shape process begins with alternate load shape (i.e., load shapes from years other than 2002, 2006, and 2007)?
 - Is the annual load duration curve (e.g., 'flat' versus 'peaky') correlated with the annual peak load (e.g., above forecast peak versus below forecast peak)?
 - Has the shape of annual load duration curves changed over time? Have zonal shapes diverged over time?
 - Additional items for consideration
 - What is the decision making framework? A focus on numerical precision? A focus on balancing qualitative and quantitative considerations?
 - Should the IRM load shape process be consistent with, or is there a basis to diverge from, other NYISO studies and processes that rely on load shapes?

The above items are not an exhaustive list of potential topics for evaluation

Schedule for evaluating load shapes, cont'd

4. Perform tasks necessary to address topics of evaluation

- Conducted during January through May 2020, concurrent with other ICS action items
- The set of necessary tasks, potential follow-up tasks, and ICS prioritization will determine whether additional time is necessary to complete this step
- All steps below assume topics for evaluation are addressed by May 2020
- 5. Identify potential load shape methodology updates
 - May 2020
- 6. Perform sensitivity study (or full Tan45) for the 2021 IRM
 - Conducted in August/September 2020 concurrent with the other 2021 IRM sensitivities
- 7. Publish final whitepaper and integrate updated load shape method into the 2022 IRM study
 - May 2021 November 2021

Questions?

DRAFT – FOR DISCUSSION PURPOSES ONLY © COPYRIGHT NYISO 2018. ALL RIGHTS RESERVED.

The Mission of the New York Independent System Operator, in collaboration with its stakeholders, is to serve the public interest and provide benefits to consumers by:

- Maintaining and enhancing regional reliability
- Operating open, fair and competitive wholesale electricity markets
- Planning the power system for the future
- Providing factual information to policy makers, stakeholders and investors in the power system

www.nyiso.com

