

EOP Review Whitepaper Progress Update

Yvonne Huang

NYISO

ICS Meeting #278

June 28, 2023

Consideration for EA Limitation

- At the 5/28 ICS meeting, the NYISO concluded that the current emergency assistance (EA) assumptions result in optimistic support from the external areas in the IRM study
 - This is based on the review of the IRM data, operational experience, future outlooks of the entire Northeast region, and discussion with external areas
 - 5/30 ICS Presentation
- To consider limitations for the EA assumptions, the NYISO reviewed the current external area model and data and considered modeling options
- The presentation covers the following topics:
 - Current external area modeling in the IRM study
 - Modeling consideration
 - Data analysis update
 - Consideration for advancement of EA in the IRM model

External Area Model

- The database for the external area are based on the NPCC regional reliability study which typically show large amount of surplus in the external areas
 - Significant adjustments are needed to be compliant with Policy 5 requirements
- Policy 5 requires the external areas to be modeled no better than the area's
 Resource Adequacy criteria and not higher than the referenced reserve margin.
 - The requirement requires that NYCA's IRM is not determined based on depending on extra capacity in external area beyond its adequacy criteria
 - This is in addition to the alignment of top 3 summer peak load days between NYCA and external areas
- However, such adjustments do not represent how capacity is maintained in the external area to achieve its respected reserve margin / RA criteria

External Area Model (con'd)

- Significant adjustments were applied in the external data in the 2023-2024
 IRM FBC in order to be compliant with Policy 5 requirements
 - The adjustments are not aligned with the delta between the anticipated margin and reference margin reported in the 2021 LTRA
 - The resulting modeled margins for external area are also not aligned with the areas' reference margins based on respected RA study

Area	Modeled in the 2023-2024 IRM FBC				2023 Margins (established – 2021 LTRA)	
	Load	Adjustments (on top of removal of shape-based units)	Margins	LOLE	Anticipated (Net Demand vs. Firm Capacity)	Reference (Based on Individual Area Study)
IES0	24,227	-5,370	114.6%	0.103	117.4%	115.9%
ISONE	28,555	-4,900	109.7%	0.102	130.0%	113.4%
HQ	39,469	+1,775	108.8%	0.108	111.9%	110.8%
РЈМ	149,941	-28,800	114.4%	0.173	136.8%	114.4%

Modeling Considerations

- To improve the modeling with more limiting EA assumptions, a number of options have been considered:
 - 1. Improve the external area data to reflect more detailed representation of the external systems
 - 2. Increase the targeted LOLE for external area under Policy 5 adjustment (e.g. 0.2 LOLE instead of 0.1 LOLE)
 - 3. Including EOPs in the external area modeling during Policy 5 adjustments
 - 4. Implement additional limits on topology to restrict EA flows
- The NYISO consider the following factors in screening the modeling options:
 - <u>Feasibility</u>: is it possible to implement the modeling option?
 - <u>Seasonality</u>: is it possible to support winter modeling?
 - LFU Bin Specific: is it possible to accommodate different assumptions for different LFU bins?
 - <u>Goal of Policy 5</u>: is it going to achieve the goal of Policy 5 of avoiding overdependence on external areas given the current model provides too optimistic EA support during the IRM simulation?
 - <u>Justifiable and Repeatable</u>: Is it based on a set of analysis/processes that can be repeated over time?
- Based on the above considerations, the NYISO proposes to proceed with modeling option 4 to implement additional limits on topology to restrict EA flows
 - Focusing on the analysis and processes that supports the additional topology limits

©COPYRIGHT NYISO 2023. ALL RIGHTS RESERVED

Modeling Considerations (con'd)

			•	
Options Considerations	Improve Data Get better and more detailed external data	2. Increase LOLE - Model the external area at higher LOLE	3. Model EOPs - Include the EOPs in the external area during Policy 5	4. Topology limits - Add limits to transfer capabilities into NYCA
Feasibility	Limited control over source data Lead time required to coordinate Not able to replicate external's own RA study	Can be implemented easily	Can be implemented if EOP data is available	Can be implemented easily
Seasonality	Depends on the seasonal representation of external data	The annual LOLE criteria will not facilitate seasonal assumptions	The EOP steps are applied annually and will not facilitate seasonal assumptions	Topology limits can be seasonal specific
LFU Bin Specific	Depends on the LFU bin specific modeling in external data	The annual LOLE criteria will not facilitate LFU bin specific assumptions	 LFU bin specific assumption can be facilitated if structured in the EOP data Same application across all LFU bins is the current default 	Topology limits can vary by LFU bins
Goal of Policy 5	May not address the issue of overly optimistic EA support in the current model	Likely address the issue of overly optimistic EA support in the current model	Including EOPs will result in holding more MW in external areas (except for IESO) and therefore will lead to more optimistic EA support compared to the current model	Likely address the issue of overly optimistic EA support in the current model
Justifiable and Repeatable	Owners are on the external areas to submit representative data	Higher than required criteria is arbitrary	Owners are on the external areas to provide up-to-date EOP data	Depends on the analysis supporting the additional topology limits

Historical Data Analysis

- As discussed at the 5/30 ICS meeting, NYISO to perform review with the historical data of extra reserves available in the external areas
 - The extra reserves data for each of the external areas is extracted for the period of 2021-2023
 - Historical data for PJM is only available for 2021-2023
 - NYCA load as % to peak load forecast is also extracted for the same period
 - Such extra reserves are the available reserve MW beyond an area's reserve requirements
 - Data from the IESO is adjusted to account for the Industrial Conservation Program due to the magnitude of impacts
- The NYISO reviews the amount of extra reserves during NYCA's high load period, both at the aggregated level and at the individual area level
 - This approach is similar to the 2017 External Area Whitepaper
- NYISO plans to present the review of the historical data at the next ICS meeting
 - The revised timeline is due to the delay in receiving data from PJM

Regional Future Conditions

- However, it is important to note that analysis with historical data will not reflect certain designed weather conditions (e.g. LFU Bin 1 or 2) or emergency conditions
 - Assessment with future conditions need to be considered
- The Reliability Assessment conducted by NPCC and NERC shows low operating margins in Ontario and New England for summer 2023 at all forecast levels
 - Low operating margin indicates that the area may need to rely on operating procedures and support from other neighbors to maintain reliability
 - Ontario may need to rely on more than 2,000 MW of non-firm supply from other areas should the known outages cannot be rescheduled

Regional Future Conditions (con'd)

Table 4-4: New England Operable Capacity Forecast (MW)

Table 4-4: New England Operable Capacity Forecast (MW)					
Week Beginning June 25, 2023	50/50 Forecast	90/10 Forecast	Above 90/10 Forecast		
Installed Capacity (+)	28,869	28,869	28,869		
Net Interchange (+)	1,030	1,030	1,030		
Dispatchable DSM (+)	447	447	447		
Total Capacity	30,346	30,346	30,346		
Peak Demand Forecast (-)	24,664	26,479	28,154		
Interruptible Load (+)	0	0	0		
Known Maintenance & Derates (-)	346	346	346		
Operating Reserve Requirement (-)	2,305	2,305	2,305		
Unplanned Outages (-)	2,800	2,800	2,800		
Operating Margin	231	-1,584	-3,259		
Operating Margin (%)	0.9	-6.0	-11.6		

Table 4-6: Ontario Operable Capacity Forecast 22 (MW)

Table 4-6: Ontario Operable Capacity Forecast - (IVIW)					
Summer 2023	50/50 Forecast	90/10 Forecast	Above 90/10 Forecast		
Installed Capacity (+)	38,273	38,273	38,273		
Net Interchange (+)	223	223	223		
Dispatchable DSM (+)	687	687	687		
Total Capacity	39,183	39,183	39,183		
Interruptible Load (+)	0	0	0		
Known Maintenance & Derates (-)	13,690	14,704	14,722		
Operating Reserve Requirement (-)	1,401	1,401	1,401		
Unplanned Outages (-)	1,565	873	873		
Peak Load Forecast (-)	22,439	24,420	27,021		
Operating Margin	88	-2,438	-5,058		
Operating Margin (%)	0.4	-10.0	-18.7		

Source: NPCC Reliability Assessment for Summer 2023

Winter Consideration

- NPCC's most recent winter assessment (2022-2023) shows low margins in New England and Quebec, beyond the 50/50 forecast level
 - Fuel deliverability risk for gas generators is one of the factors impacting New England's winter margin
 - MMU analysis on the gas availability shows that pipeline limits to New England impact the availability of gas generation in eastern NY under moderately cold winter weather
 - Quebec is a winter peaking system and typically requires external support during winter season.
 - All time peak demand record in Quebec has been set two years in a row (40,500 MW in 2022 and 42,700 MW in 2023)
- PJM announced significant shift in reliability risk to the winter based on preliminary analysis with updated reliability risk modeling (5/30 Stakeholder Presentation)
- IESO's 2022 Annual Planning Outlook shows switching to winter peaking system in early 2030s, and can be further advanced with significant electrification uptake in the industrial sector (2022 Annual Planning Outlook)
 - Summer peaking was forecasted to continue beyond 2040 in the 2021 Planning Outlook

Advancing EA Consideration

- As part of the scope for this Whitepaper, the appropriateness for advancing EA prior to EOPs in the IRM model needs to be reviewed
 - At this point, the NYISO aims to develop a more conservative EA modeling. Advancing EA prior to EOPs will offset some level of conservatism in the revised EA modeling
 - Advancing EA prior to EOPs can improve the current ELR functionality. However, the effect of advancing EA will need to be reviewed with the potential revised modeling for SCRs
 - Preliminary analysis indicates sizable level of advanced EA will be needed to have meaningful impact on the ELR performance.
- NYISO recommends not to consider advancing EA prior to EOPs in the IRM model under this whitepaper
 - Additional review can resume when revised modeling for SCRs is recommended

Next Steps

- The NYISO to present the review of historical extra reserve data and potential IRM implications at the 8/2 ICS meeting
- The NYISO to also discuss initial recommendations for the EOP whitepaper at the 8/2 meeting
 - The NYISO aims propose seasonal, area and LFU bin specific recommendations
 - The NYISO also aims develop process to review and update the EA assumptions on a regular basis
- The NYISO aims to have the draft whitepaper report for ICS review at the 8/30 meeting

Our Mission & Vision

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Questions?

