

Demand Response: Final Model Values for 2024 IRM Studies

Shashwat Tripathi

Associate Distributed Resources Operations Engineer

NYSRC – Installed Capacity Subcommittee

August 02, 2023

Agenda

- Background
- Final SCR model values for 2024 IRM studies
- Appendix I Description of ICS Adjustment Factors
- Appendix II Modeling Improvements for Capacity Accreditation

Background

Overview of the SCR zonal performance factor calculation methodology as accepted at the 5/4/2016 ICS meeting

Background

- NYISO calculates SCR zonal performance factors for IRM studies based on historical SCR performance.
 The data set includes:
 - All event hours, by zone, for each mandatory event from the most recent five years in which a mandatory event was initiated by the NYISO (but not older than summer 2012)
 - All performance test hours accumulated during the above timeframe even when there were no mandatory events
 - 2024 IRM study data set includes all event hours from mandatory events and performance tests from Summer 2012 through Summer 2022
- ICS applies additional adjustment factors (see Appendix for details)
 - Translation Factor
 - Fatigue Factor

Effective Performance Factor = Zonal Performance Factor * Translation Factor * Fatigue Factor

SCR Model Value MW = SCR ICAP MW * Effective Performance Factor

Final SCR Model Values

Inputs for 2024 IRM Studies

Additional inputs since 2023 IRM studies

- Winter 2021-2022 and Summer 2022 SCR Performance Test hours total of 2 hours
- Summer 2022 SCR Event hours total of 13 hours

The data set consists of

- All event hours, by zone, from mandatory events from Summer 2012 through Summer 2022
 - Range from 20 event hours for Zone A to 82 event hours for Zone K
- All performance test hours from Summer 2012 through Summer 2022
 - 21 Performance Test hours

		Superzone	ICS Adjustment	Factors	Effective	SCR ICAP	
	Super	Performance		Fatigue	Performance	MW based on	Final Model
Program	Zone	Factor	ACL to CBL Factor	Factor	Factor	July 2023	Values MW
SCR	A-F	87.3%	92.9%	100%	81.1%	719.1	583.4
SCR	G-I	77.4%	84.2%	100%	65.1%	84.3	54.9
SCR	J	70.6%	74.5%	100%	52.6%	442.4	232.7
SCR	K	69.8%	76.2%	100%	53.2%	35.3	18.8
Total 1281.0							
							69.5%

Comparison of 2024 with 2023 SCR Values

Fo	r 202		Final SCR M lues	lodel	For 2023 IRM - Final SCR Model Values			Comparison of 2024 with 2023 IRM		
Program	Super Zone	Effective Performance Factor	SCR ICAP MW based on July 2023 Enrollment Data	Final Model Values MW	Effective Performance Factor	July 2022 MW	Final Model Values MW	Effective Performance Factor	SCR ICAP	Model Value MW
	A-F	81.1%		583.4	81.7%	694.5	567.7	-0.6%	24.6	15.7
SCR	G-I	65.1%	84.3	54.9	64.7%	79.1	51.2	0.4%	5.2	3.7
SCR	J	52.6%	442.4	232.7	52.5%	417.5	219.1	0.1%	24.9	13.5
SCR	K	53.2%	35.3	18.8	53.1%	33.7	17.9	0.1%	1.6	0.9
Total 1281.0				889.7		1224.8	855.9		56.2	33.8
69				69.5%			69.9%			-0.4%

 Minor change in Effective Performance Factor for Zone F due to the inclusion of multiple Zone F events since 2023 IRM SCR values were finalized

Appendix I – Description of ICS Adjustment Factors

SCR Baselines

Average Coincident Load (ACL):

- Capacity Baseline for resources participating in the SCR program
- Required for all resources participating in the SCR Program
- Used for Capacity Market participation

Customer Baseline Load (CBL):

- Energy Baseline for resources participating the SCR programs
- Optional submission following a NYISO Test or Event
- Used for Energy Payments

Comparison - 2024 vs 2023 ACL to CBL Translation Factor Zone 2024 2023 Difference Program SCR A-F 92.9% 93.6% -0.7% SCR 84.2% 84.2% 0.0% G-I SCR 74.5% 74.4% 0.0% SCR 76.2% 76.3% -0.1%

SCR Adjustment Factors used in IRM Studies

Translation Factor (ACL to CBL)

- The Translation Factor is used to adjust performance based on ACL baseline to a CBL equivalent
- Transition from fixed to calculated Translation Factor established during 9/5/2018 ICS Meeting
- Calculated value from same data set used for Zonal Performance Factors
- Only uses responses from resources reporting their CBL

Fatigue Factor

- The Fatigue Factor is applied to address concerns that fatigue may occur if SCRs are deployed frequently
- Current value of Fatigue Factor is 1.00

Appendix II – Modeling Improvements for Capacity Accreditation

Modeling Improvements for Capacity Accreditation

- As part of the NYISO's Modeling Improvements for Capacity
 Accreditation project, the NYISO and GE Energy Consulting are
 testing alternative techniques for modeling SCRs in the IRM model.
- At the conclusion of this testing, the NYISO will present any recommended SCR modeling changes to ICS for consideration in next year's IRM study.

Our Mission & Vision

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

