

Load Forecast Uncertainty (LFU) Models for the

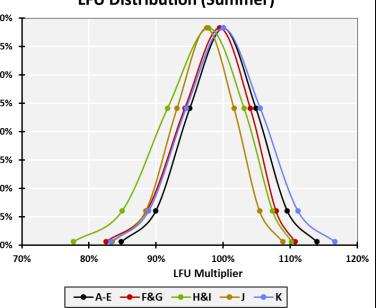
2024 Installed Reserve Margin (IRM) Study

Riaz Khan


Demand Forecasting & Analysis

NYSRC Installed Capacity Subcommittee

May 30, 2023


Overview

- Summary of Load Forecast Uncertainty (LFU) Results
- Summer LFU
 - Zones A-E, Zones F&G, Zones H&I, Zone J, Zone K
- Winter LFU NYCA
- 10th/90th/99th Percentile LFU
- Questions/Discussion

Recommended LFU

										LFU Distribution (Summer)	
			-						^{40%} T	~~	
New Recommended LFU Multipliers				35% -							
Summer Winter					30% -						
Bin	Bin z	Bin	A-E	F&G	H&I	J	к	NYCA			
		Probability				-			Z5% − Z5% − Z0% −		
Bin 1	2.74	0.62%	113.93%	110.69%	110.18%	108.88%	116.62%	110.37%	g 20% -		
Bin 2	1.79	6.06%	109.54%	107.86%	107.34%	105.42%	111.14%	106.37%	ug 15% -		
Bin 3	0.89	24.17%	104.86%	104.04%	103.09%	101.61%	105.52%	102.75%			
Bin 4	0.00	38.29%	100.00%	99.46%	97.81%	97.51%	100.00%	99.42%	10% -		
Bin 5	-0.89	24.17%	95.00%	94.29%	91.70%	93.12%	94.48%	96.29%	5% -		
Bin 6	-1.79	6.06%	89.91%	88.61%	84.93%	88.45%	88.89%	93.30%			
Bin 7	-2.74	0.62%	84.79%	82.53%	77.65%	83.48%	83.27%	90.41%	0% + 70%)% 80% 90% 100% 110%	120%
									105	LFU Multiplier	120%

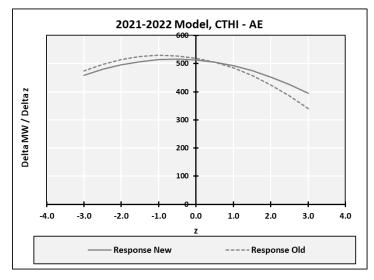
LFU Comparison

				Existing LFU Multipliers					
				Summer					
Bin	Bin z	Bin Probability	A-E	F&G	H&I	I	к	NYCA	
Bin 1	2.74	0.62%	113.18%	111.42%	110.50%	109.10%	116.30%	110.29%	
Bin 2	1.79	6.06%	109.25%	108.20%	107.41%	105.78%	111.32%	106.26%	
Bin 3	0.89	24.17%	104.80%	104.14%	103.08%	102.05%	105.60%	102.65%	
Bin 4	0.00	38.29%	100.00%	99.46%	97.82%	97.98%	100.00%	99.37%	
Bin 5	-0.89	24.17%	94.96%	94.28%	91.83%	93.60%	93.87%	96.32%	
Bin 6	-1.79	6.06%	89.75%	88.67%	85.21%	88.90%	86.89%	93.46%	
Bin 7	-2.74	0.62%	84.49%	82.72%	78.09%	83.89%	80.04%	90.74%	

			LFU N	LFU Multipliers Delta (Recommended - Ex					
				Summer					
Bin	Bin z	Bin Probability	A-E	F&G	H&I	J	к	NYCA	
Bin 1	2.74	0.62%	0.75%	-0.73%	-0.32%	-0.22%	0.32%	0.08%	
Bin 2	1.79	6.06%	0.29%	-0.34%	-0.07%	-0.36%	-0.18%	0.11%	
Bin 3	0.89	24.17%	0.07%	-0.11%	0.01%	-0.44%	-0.07%	0.10%	
Bin 4	0.00	38.29%	0.00%	0.00%	-0.02%	-0.47%	0.00%	0.05%	
Bin 5	-0.89	24.17%	0.04%	0.01%	-0.12%	-0.48%	0.61%	-0.03%	
Bin 6	-1.79	6.06%	0.16%	-0.05%	-0.28%	-0.45%	2.00%	-0.16%	
Bin 7	-2.74	0.62%	0.30%	-0.19%	-0.45%	-0.41%	3.22%	-0.33%	

Methodology (Summer LFU)^[1]

- Load: DSS load. Demand response was added back.
- Load-weather relationship was established through regression model.
- For each LFU area, models were developed using summer (Jun-Aug) data from the years 2019, 2021 and 2022:
 - Pooled 1: 2019, 2021, 2022
 - Pooled 2: 2021, 2022
 - Pooled 3: 2019, 2022
 - Standalone: 2022
- Final model was selected based on model accuracy, statistical stability and overall response and weather sensitivity
- Stepwise regression was used for variable selection

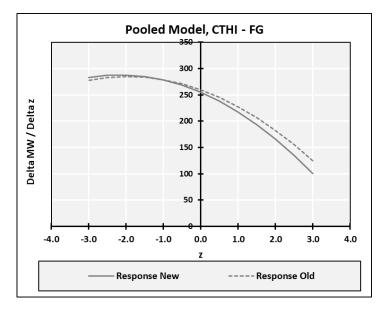


[1] NYISO developed models

Summer LFU: Zones A-E

C

. .

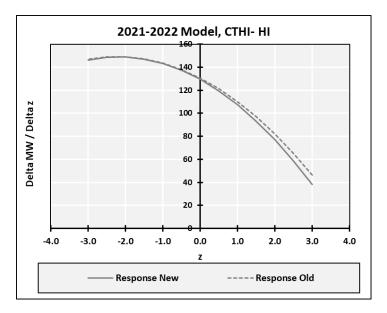


Summer -	ummer - AE							
Bin Bin z		Bin Probability	MW I		Current LFU			
Bin 1	2.74	0.62%	10,393	113.93%	113.18%			
Bin 2	1.79	6.06%	9,993	109.54%	109.25%			
Bin 3	0.89	24.17%	9,566	104.86%	104.80%			
Bin 4	0.00	38.29%	9,122	100.00%	100.00%			
Bin 5	-0.89	24.17%	8,667	95.00%	94.96%			
Bin 6	-1.79	6.06%	8,202	89.91%	89.75%			
Bin 7	-2.74	0.62%	7,735	84.79%	84.49%			
		Design	9,122					

- Suppressed based load (-0.8%)^[1]
- Slightly stronger load growth at warmer temperature
- Overall increase in LFU

Summer LFU: Zones F&G

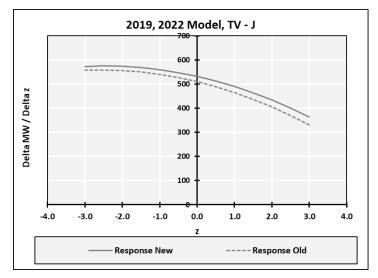
Cummer FC



Summer -	FG				
Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	4,934	110.69%	111.42%
Bin 2	1.79	6.06%	4,808	107.86%	108.20%
Bin 3	0.89	24.17%	4,638	104.04%	104.14%
Bin 4	0.00	38.29%	4,434	99.46%	99.46%
Bin 5	-0.89	24.17%	4,203	94.29%	94.28%
Bin 6	-1.79	6.06%	3,950	88.61%	88.67%
Bin 7	-2.74	0.62%	3,679	82.53%	82.72%
		Design	4,458		

- Decreased base load (-1.2%)
- Slightly stronger saturation at higher temperatures
- Overall decrease in LFU

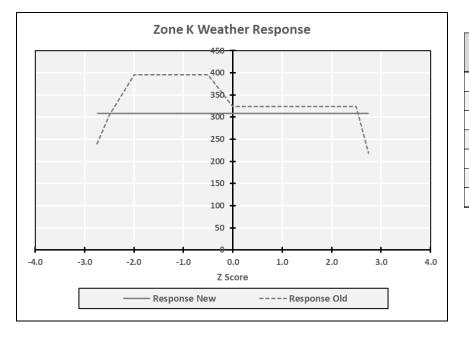
Summer LFU: Zones H&I


Summer -	HI				
Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	2,122	110.18%	110.50%
Bin 2	1.79	6.06%	2,067	107.34%	107.41%
Bin 3	0.89	24.17%	1,986	103.09%	103.08%
Bin 4	0.00	38.29%	1,884	97.81%	97.82%
Bin 5	-0.89	24.17%	1,766	91.70%	91.83%
Bin 6	-1.79	6.06%	1,636	84.93%	85.21%
Bin 7	-2.74	0.62%	1,496	77.65%	78.09%
		Design	1,926		

. . .

- Decreased base load (-2.4%)
- Slightly stronger saturation at higher temperatures
- Slight decrease in LFU

Summer LFU: Zone J



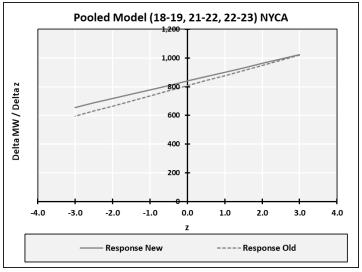
Summer -	J				
Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	11,856	108.88%	109.10%
Bin 2	1.79	6.06%	11,480	105.42%	105.78%
Bin 3	0.89	24.17%	11,065	101.61%	102.05%
Bin 4	0.00	38.29%	10,618	97.51%	97.98%
Bin 5	-0.89	24.17%	10,141	93.12%	93.60%
Bin 6	-1.79	6.06%	9,632	88.45%	88.90%
Bin 7	-2.74	0.62%	9,091	83.48%	83.89%
		Design	10,889	· · · · · · · · · · · · · · · · · · ·	

- Increased base load (+4.1%)
- Greater load growth at higher temperature
- Slight decrease in LFU

Summer LFU: Zone K



PSEG Last 10 Years Model Bin Bin Bin z MW New LFU **Current LFU** Probability 2.74 0.62% 5,830 116.62% Bin 1 116.30% Bin 2 1.79 6.06% 5,555 111.14% 111.32% 5,275 105.52% Bin 3 0.89 24.17% 105.60% 0.00 38.29% 4,999 100.00% Bin 4 100.00% 94.48% -0.89 24.17% 4,723 Bin 5 93.87% 6.06% 88.89% Bin 6 -1.794,444 86.89% Bin 7 -2.74 0.62% 4,162 83.27% 80.04%


Design

4,999

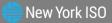
- Decreased base load (-2.7%)
- Overall increase in LFU


Winter LFU: NYCA

Winter - NYCA

Bin	Bin z	Bin Probability	MW	New LFU	Current LFU
Bin 1	2.74	0.62%	25,867	110.37%	110.29%
Bin 2	1.79	6.06%	24,930	106.37%	106.26%
Bin 3	0.89	24.17%	24,081	102.75%	102.65%
Bin 4	0.00	38.29%	23,299	99.42%	99.37%
Bin 5	-0.89	24.17%	22,565	96.29%	96.32%
Bin 6	-1.79	6.06%	21,865	93.30%	93.46%
Bin 7	-2.74	0.62%	21,189	90.41%	90.74%
		Design	23,436		

- Increased based load (+1.5%)
- Slight increase in load growth at colder temperatures
- Slight increase in LFU at upper bins


Updated 10th/90th/99th Percentile LFU Multipliers

- These values show the 10th, 90th, and 99th percentile extreme weather multipliers based on the updated LFU distributions presented today
- These multipliers are analogous to those used to generate the extreme weather forecasts in Table I-7 in the Gold Book

Percentile	Z Value	A-E	F&G	H&I	J	К	NYCA Winter
10%	-1.28	92.77%	91.85%	88.80%	91.11%	92.05%	94.96%
90%	1.28	106.95%	105.82%	105.11%	103.33%	107.97%	104.30%
99%	2.33	112.09%	109.62%	109.17%	107.45%	114.27%	108.61%

Questions?

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

Reference Slides

LFU Definition – NYSRC Policy 5-14

Section 3.5.1 NYCA Load Model: Load Forecast Uncertainty Model

Load Forecast Uncertainty Model The load forecast uncertainty (LFU) model captures the impacts of weather conditions on future loads. The LFU gives the MARS program information regarding seven load levels (three loads lower and three loads higher than the median peak) and their respective probabilities of occurrence. For e ach modeled hour, the MARS program determines the resource adequacy and calculates an average loss of load expectation for the capability year for each of the seven load levels. MARS uses this information to evaluate a probability weighted-average LOLE for each area. Recognizing the unique LFU nature of individual NYCA zones, the LFU model is subdivided into five separate areas: New York City (Zone J), Long Island (Zone K), Zones H and I, Zones F and G, and the rest of New York State (Zones A-E).

Preparation of the LFU model is coordinated by the NYISO in collaboration with the TOs. The process used to develop the LFU model generally follows the procedure used to calculate the forecasted NYCA ICAP peak as described in the NYISO Load Forecasting Manual. This process follows the development of the NYCA peak, insofar as the LFU is a distribution, not a point estimate. Following acceptance from the NYISO Load Forecasting Task Force, the NYISO submits the final LFU model to be used in MARS to ICS for review and approval. The LFU model is built in three steps: The first step creates a relationship between a weather metric and the summer peak load for each zone using as many years of historical data as is available. The second step relates the same weather metric with the daily peak load historical data of selected years that are not older than 10 years. The third step combines the correlations found in the first and second steps to produce a relationship of expected yearly peak load in a per unit base and its probability of occurrence.

CTHI Computation

<u>Step 1</u>: Calculate hourly *THI* as a weighted average of the dry bulb temperature (DB) and the wet bulb temperature (WB). There are 24 values per day:

For any day d,

 $(THI)_{di} = 0.6 \times (DB)_{di} + 0.4 \times (WB)_{di}$

Where i = 0, 1, 2, ..., 23 indicate the hours of a day

Step 2: Calculate the *THI_max* for a day. This is the maximum hourly THI value for that day:

 $(THI_max)_d = \max((THI)_{di})$

<u>Step 3</u>: Calculate the daily CTHI using a weighted average of three days (the day for which the CTHI is being calculated and the two preceding days):

 $(CTHI)_d = 0.7 \times (THI_max)_d + 0.2 \times (THI_max)_{d-1} + 0.1 \times (THI_max)_{d-2}$

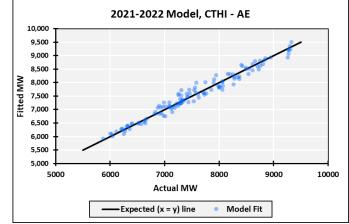
Winter Variable Computation

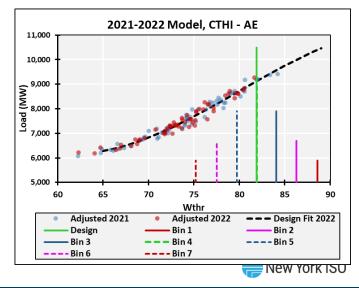
Wind Chill, WC = f(DB, WS) → DB = Dry Bulb Temperature (°F) → WS = Wind Speed (mph)

 $WC = 35.74 + 0.6215(DB) - 35.75(WS^{0.16}) + 0.4275(DB)(WS^{0.16})$ https://www.weather.gov/ama/windchill

 $X_{Mor} = Avg(X_{HB06} to X_{HB11})$ $X_{Aft} = Avg(X_{HB12} to X_{HB17})$ X = DB, WC

In-Day Var for day i, $v_i = 0.15 DB_{mor_i} + 0.35 DB_{aft_i} + 0.35 WC_{aft_i} + 0.15 WC_{eve_i}$ Winter Variable for day $i = 0.8v_i + 0.1v_{i-1} + 0.1v_{i-2}$

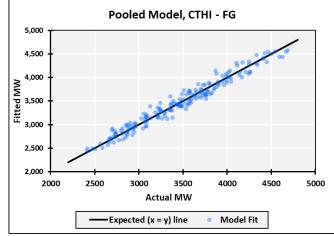

Summer Model: Zones A-E

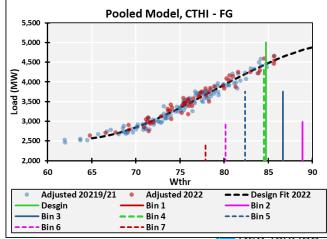

- NYISO developed model
- Two-year model (2021, 2022)
- Primary weather variable: CTHI^[1]

Mult-R: 98.4%	R-Sq:	96.9%	Adj. R-Sq: 96	.7%
Var	Coeff.	Std Err	t-Stat	P-value
Intercept	104371.55	35365.89	2.95	0.4%
wthr	-4013.50	1461.55	-2.75	0.7%
wthr_sq	52.86	20.07	2.63	1.0%
wthr_cb	-0.220	0.092	-2.41	1.8%
Y_2021	87.37	29.46	2.97	0.4%
Jun	-171.01	36.35	-4.70	0.0%
Fri	-134.65	35.86	-3.75	0.0%

[1] CTHI – Cumulative Temperature and Humidity Index

Note: Adjusted actual values in charts represent loads adjusted for binary effects

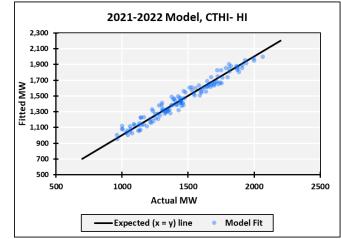


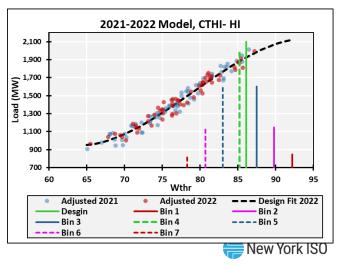


Summer Model: Zones F&G

- NYISO developed model
- Pooled model (2019, 2021, 2022)
- Primary weather variable: CTHI

Mult-R: 98.1%	R-S	q: 96.2%	Adj. R-Sq: 96.1%		
Var	Coeff.	Std Err	t-Stat	P-value	
Intercept	74787.74	14707.01	5.09	0.0%	
wthr	-2946.29	597.95	-4.93	0.0%	
wthr_sq	38.97	8.07	4.83	0.0%	
wthr_cb	-0.165	0.036	-4.56	0.0%	
Y_2021	93.70	16.79	5.58	0.0%	
Jun	-56.26	20.47	-2.75	0.7%	
Fri	-45.02	19.47	-2.31	2.2%	

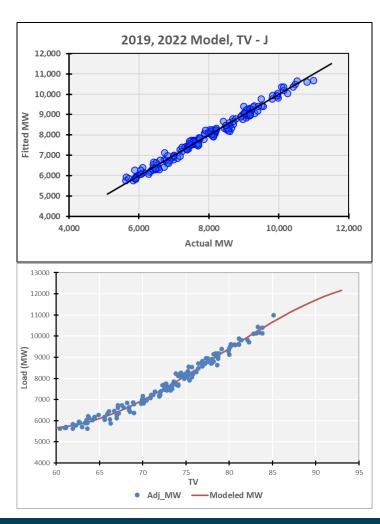




Summer Model: Zones H&I

- Developed by NYISO
 - Reviewed by Con Ed
- Two-year model (2021, 2022)
- Primary weather variable: CTHI

Mult-R: 97.9%	R-S	q: 95.9%	Adj. R-Sq: 95.8%		
Var	Coeff.	Std Err	t-Stat	P-value	
Intercept	38669.03	13288.38	2.91	0.4%	
wthr	-1525.18	524.53	-2.91	0.4%	
wthr_sq	20.02	6.88	2.91	0.4%	
wthr_cb	-0.08	0.03	-2.81	0.6%	
Y_2021	53.40	10.21	5.23	0.0%	



Summer Model: Zone J

- Developed by Con Ed
 - Reviewed by NYISO
- Two-year model (2019, 2022)
- Primary weather variable: TV

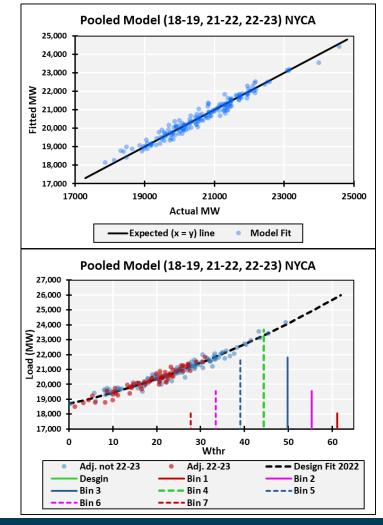
Multiple R: 99.2%		R-Sq: 98.4%	Adj. R-Sq: 98.4%		
	coef	std err	t	P> t	
Intercept	94320.00	20900.00	4.505	0.00	
TV	-3762.36	872.32	-4.313	0.00	
TV_2	51.04	12.06	4.231	0.00	
TV_3	-0.22	0.06	-3.9	0.00	
Yr_2019	359.88	26.59	13.532	0.00	

Data: 2019 and 2022, May – Sep, Mon – Thu, No Holidays

Summer Model: Zone K

- LIPA developed model
 - Reviewed by NYISO
- Ten-year model (2013 2022)
- Weather variables in model:
 - Dry Bulb Temperature (Spline)
 - THI4
 - THI24 (Spline)
- Primary weather variable for uncertainty: THI4

	SUMMARY OUTPUT				
	Regression Statistics				
	Multiple R	96.2%			
	R Square	92.5%			
	Adjusted R Square	92.4%			
	Standard Error	156			
	Observations	965			
Method = stepwise	Variable	Coeff.	Std. Err	t Stat	P-value
Intercept	Intercept	1,810.20	27.4	66.0	0.0%
X Variable 1	DB > 66	36.20	2.7	13.6	0.0%
X Variable 2	DB > 80	-25.83	4.0	-6.5	0.0%
X Variable 3	THI_4 > 64	86.40	3.5	24.9	0.0%
X Variable 4	THI_24 > 72	84.84	5.8	14.7	0.0%
X Variable 5	THI_24 > 78	-68.81	38.3	-1.8	7.3%
X Variable 6	SUNDAY	-217.70	15.0	-14.6	0.0%
X Variable 7	SATURDAY	-195.74	14.6	-13.4	0.0%
X Variable 15	2013	331.54	23.3	14.2	0.0%
X Variable 16	2014	277.05	22.5	12.3	0.0%
X Variable 17	2015	203.88	22.2	9.2	0.0%
X Variable 18	2016	216.55	22.1	9.8	0.0%
X Variable 19	2017	143.86	22.8	6.3	0.0%
X Variable 20	2018	180.10	22.4	8.0	0.0%
X Variable 21	2019	148.83	22.4	6.6	0.0%
X Variable 22	2020	62.07	22.5	2.8	0.6%
X Variable 23	2021	60.59	22.6	2.7	0.8%



Winter Model: NYCA

- Developed by NYISO
- Winter weather variable was developed by NYISO as part of LFU Phase 3^[1]
- Data used:
- 2018-19, 2021-22, 2022-23, Dec Feb, non-holiday weekdays

Mult-R: 98.1%	R-Sq: 96.2%		Adj. R-Sq:	96%
Var	Coeff.	Std Err	t-Stat	P-value
Intercept	18695.80	83.77	223.17	0.0%
Wthr	67.07	6.95	9.64	0.0%
Wthr_sq	0.82	0.15	5.54	0.0%
CY_18_19	724.051	44.637	16.22	0.0%
CY_21_22	336.59	43.38	7.76	0.0%
Jan	-309.31	44.20	-7.00	0.0%
Feb	-645.50	43.55	-14.82	0.0%
Fri	-383.41	42.83	-8.95	0.0%

[1] <u>LFTF presentation link</u> ICS presentation link

