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As we move towards a decarbonized grid, reliance on weather-dependent energy increases as does exposure
to prolonged natural resource shortages known as energy droughts. Compound energy droughts occur when
ghts two or more predominant renewable energy sources simultaneously are in drought conditions. In this study
we present a methodology and dataset for examining compound wind and solar energy droughts as well as
the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020
infrastructure. Using a recently developed dataset of simulated hourly plant level generation which includes
thousands of wind and solar plants, we examine the frequency, duration, magnitude, and seasonality of energy
droughts at a variety of temporal and spatial scales. Results are presented for 15 Balancing Authorities (BAs),
regions of the U.S. power grid where wind and solar are must-take resources by the power grid and must
be balanced. Compound wind and solar droughts are shown to have distinct spatial and temporal patterns
across the CONUS. BA-level load is also included in the drought analysis to quantify events where high load
is coincident with wind and solar droughts. We find that energy drought characteristics are regional and the
longest droughts can last from 16 to 37 continuous hours, and up to 6 days. The longest hourly energy droughts
occur in Texas while the longest daily droughts occur in California. Compound energy drought events that
include load are more severe on average compared to events that involve only wind and solar. In addition, we
find that compound high load events occur more often during compound wind and solar droughts that would
be expected due to chance. The insights obtained from these findings and the summarized characteristics of
energy drought provide valuable guidance on grid planning and storage sizing at the regional scale.
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1. Introduction and hydro are of particular concern for their potential grid impacts.

These coincident, or compound energy droughts can be defined for any

Hydrologic droughts bring to mind dry soils, low flows and wither-
ing crops spanning large geographic regions, lasting months or years,
affecting entire populations . While energy droughts from renewable
sources occur on a much shorter time scale, they can span similarly
large geographic regions as both are fundamentally driven by mete-
orology. Energy droughts result in energy price spikes that cascade
into large-scale power grid impacts such as blackouts, brownouts, and
acute carbon emissions from thermoelectric plants that provide for the
lost generation [1-3]. As intermittent renewables continue their rapid
expansion towards a decarbonized grid, the impacts of energy droughts
on the power grid’s reliability, economic performance, and greenhouse
gas emissions is increasing and thus needs further study [4].

Although transmissions can alleviate the stress of a drought of a pre-
dominant renewable resource in one particular region [5,6], coincident
droughts that involve multiple renewable resources such as wind, solar
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two or more variables, though typically wind and solar are of the most
interest due to their extensive adoption and growing integration into
grids across the world [2,7-12]. In Germany, these compound drought
events are common enough that the word dunkelflaute has come to
describe their impact to the grid [13].

Drought events involving only sources of energy production are
known as energy production droughts [2]. Energy supply droughts
involve use of load, typically determined from the net load or the load
after subtracting wind and solar production. In some cases, energy sup-
ply droughts may be statistically significant but have no actual impact
on the grid. For example, during a period of high hydro generation,
wind and solar could be in drought conditions yet still be curtailed,
giving the drought little or no impact. By including load in the defi-
nition of drought we are able to assess the frequency, duration, and
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magnitude of drought events that have a greater chance of impacting
the grid.

Previous studies have focused on general meteorological drivers
for energy droughts [1,14-17], or specifically on the reliability of
complementary renewable systems [18-20]. Other studies have looked
at energy droughts and the complementarity of wind and solar in
Europe [1,2,7,10,11,21-26], Latin America [8,27] and Africa [28].
Relatively few studies have focused on North America. [12] examined
weekly droughts for a region encompassing most of western North
America, finding that compound wind and solar droughts were most
likely to occur in the winter under specific atmospheric circulation
patterns. [29] demonstrated summertime meteorological drivers of rel-
evance to renewable energy supply and demand. [30] examined wind
and solar energy droughts separately for California and the Western
Interconnection, finding that few daily-timescale droughts last longer
than 7 days. [31] developed a space-time simulation model that gen-
erates fields of hydroclimatic data used in energy drought analysis, and
applied their model to Texas.

Although energy droughts have been a focus in the aforementioned
studies, none of them employ a standardized definition of drought.
There are variations in the time scales applied, drought thresholds,
and seasonality considerations when defining droughts. The lack of
standardization prevents the ability to measure energy droughts and
link them to their impact on the power grid as well as understand-
ing the opportunities to design and site short to long term duration
storage technologies. In this paper we adopt the standardized energy
drought indices introduced by [32] and inspired by the indices used in
hydrology and climatology [33].

The time scale of a drought is strongly related to the frequency and
duration of drought events [33]. Most previous studies use a single
time scale to discuss energy droughts (typically 1-day or 1-week).
In this study we look at several time scales ranging from 1-hour to
5-days specifically designed around the management of hydropower
and other potential storage resources. Energy drought studies typically
define droughts as consecutive periods of low or no production. This
definition is complicated somewhat when looking at sub-daily scales
due to regular overnight periods with no solar production. Some special
consideration for these periods is necessary.

In this study we examine energy droughts across the Continental
US (CONUS) at the Balancing Authority (BA) scale. The wind and
solar are considered “must-take” by the power grid at the BA scale.
Because of the intermittency, solar and wind are also considered non-
dispatchable through the transmission system. This scale is similar to
countries and provinces and is strategic in that wind, solar and load
need to be balanced prior to understanding transmission needs. This
spatial scale was chosen for its application to future studies examin-
ing storage siting, sizing and operational guidance to accommodate
droughts and address reliability requirements in conjunction with the
role of transmission. The goals of this study are to (1) develop the first
CONUS-scale assessment and benchmark of energy droughts for the
current (2020) infrastructure of wind and solar power plants and (2)
characterize the frequency, duration, and intensity of energy droughts
including their temporal and spatial distribution to inform power grid
planning studies — specifically storage versus transmission in long term
planning studies. By utilizing actual wind and solar plant configuration
data from the U.S. Energy Information Administration (EIA) we get
a view that is as representative as possible to actual conditions. The
analysis is based on the contemporary (2020) wind and solar fleet and
40 years of historical weather (1980-2019). Future studies will look at
future infrastructure and weather conditions.

2. Data
2.1. Wind and solar generation data

In this study we utilized a dataset of simulated plant level solar
and wind generation [34]. The dataset includes hourly wind and solar
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generation for all EIA-860 2020 plant locations [35] using weather
from 1980-2019. A summary of the approach used to develop the
dataset is summarized here.

The wind and solar generation is based on meteorological data
from the Thermodynamic Global Warming (TGW) simulation data [36,
37]. TGW is dynamically downscaled based on ERA5 boundary con-
ditions [38]. The dataset includes historical simulations and future
projections, but for this study we only utilized the historical data
(1980-2019). All meteorological variables are available at 1/8th degree
(~12 km) resolution. Surface variables such as solar radiation and sur-
face temperatures are available hourly, while upper level atmospheric
variables such as wind and pressure are available 3-hourly. All 3 hourly
variables were linearly interpolated to hourly. Upper-level atmospheric
data that is only available at specific pressure levels was interpolated
to the appropriate turbine hub heights of each wind power plant.

Downward shortwave solar radiation, also known as Global Hor-
izontal Irradiance (GHI), is an available variable from TGW. Diffuse
solar radiation was produced using the simulated GHI and the DISC
model [39,40]. DISC has known biases when used under clear sky
conditions so bias correction was applied to the final solar generation
data.

One potential challenge in utilizing the TGW data is the uncertainty
around the capability of the 1/8th degree TGW data to accurately
capture cloud radiative effects — the impact of clouds on the amount of
longwave (LW) and shortwave (SW) radiation that reaches the surface.
At this resolution the majority of clouds, and thus their resulting
impacts on surface radiation, must be parameterized in the model that
produced the TGW data. The paramaterization of cloud radiative effects
is scale dependent [41]. Furthermore, the strongest shortwave cloud
radiative effects come from shallow cumulus clouds which are not re-
solved at this scale (e.g., [42]). Collectively this means that the surface
SW and LW radiation in the TGW data may be biased. To account
for the biases in the solar radiation data, National Solar Radiation
Database (NSRDB) data was collected at every plant location and run
through identical solar generation models [43]. Bias correction was
then applied to the generation data. Bias correction typically lowered
the solar generation by approximately 10%.

Using the TGW meteorology data, hourly wind and solar generation
profiles were produced across the CONUS for every wind and solar
plant that is listed in the EIA-860 2020 database [35]. Power plant
configurations were developed using EIA-860 data. These plant config-
urations along with the TGW meteorological data were used as inputs
to the NREL reV model [44,45] to produce hourly generation data for
each plant.

2.2. Load data

To characterize energy supply droughts we produced historical
hourly total load projections that correspond temporally and spatially
to the wind and solar generation data. Loads were produced using
the Total Electricity Loads (TELL) model which downscales simulated
annual state-level electricity demands to an hourly resolution [46,47].
The input data to TELL is hourly time series of meteorology from
the same TGW dataset that underpins the wind and solar generation
simulations. TELL then uses the hour-to-hour variations in weather to
model total load for each BA. Because they are based on the same
hourly gridded meteorology forcing the load, the simulations from
TELL and the wind and solar generation simulations are temporally and
spatially coincident.

Over the 40 year historical period of the data, load has had an up-
ward trend due to rising population and, more recently, electrification.
To account for such an upward trend, each year of data was normalized
by subtracting the annual mean and dividing by the annual standard
deviation for each Balancing Authority (BA). BAs are North American
energy regions that are required to balance total generation with load
locally before relying on neighboring interconnected regions. There are
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Fig. 1. Wind and solar plant locations for each BA in the CONUS that contains at least 5 wind and solar plants.

69 BAs across the U.S. (as of 2020) which are equivalent to countries or
sub regions in other continental bulk power grids. The per-year per-BA
load normalization allows for every year’s load to be analyzed equally
and consistently using a percentile based threshold, described in the
next Section 3.

2.3. Hourly BA-level generation data

Plant-level wind and solar generation data were aggregated by
BA. Due to the intermittency of the resources, hourly wind and solar
datasets are typically described either in MWh or with capacity factors.
In this study, generation is expressed as a capacity factor which is total
generation divided by total plant capacity. Only those BAs that had a
minimum of 5 wind and solar plants were included so that the results
are not unduly influenced by a single plant. This resulted in 15 BAs for
this analysis that span the CONUS (Fig. 1). The BAs cover most of the
CONUS except for the southeast region due to lack of wind plants. The
2020 fleet includes 2817 solar plants and 1151 wind plants (Table 1).
The final dataset used in the analysis thus consists of hourly wind and
solar generation and coincident total load for each BA from 1980-2019
(40 years) for 15 BAs.

3. Methodology

Energy droughts have multiple definitions in the literature, but
generally the goal is the same in every definition: to define a period
of time during which variable energy generation is low. The definition
is dependent on the threshold that is used to flag a low period as well
as the resolution of the input data. Definitions in the literature tend to
look at daily data, but given that we have hourly data it is possible to

look at a variety of time scales from sub-daily to multi-day. This range
of resolutions aims to address specific temporal scales in bulk power
grid operations, specifically to address the need and optimal dispatch of
sub-daily storage and management of longer duration storage. Energy
production droughts are those which only involve low energy produc-
tion, in this case wind and solar. A production drought might not have
any grid impacts if load is low. Energy supply droughts incorporate
energy demand into the definition and quantify drought severity in
terms of demand or load shortfall.

3.1. Energy droughts — Sub-daily to multi-day

To define energy droughts we adopt the indices introduced by [32].
Standardized indices offer a consistent scale that enables the com-
parison of droughts both within a single study and across multiple
studies, and bring the definition of energy droughts in line with other
fields such as hydrology and climatology. For wind and solar, the
index introduced by [32] is called the standardized renewable energy
production index (SREPI)

o (|13 1P
SREPI(P) = & <n+2 [1+;11{P, sP,}D

where P, represents the solar or wind production at time t, @~ is
the standard normal quantile function, » is the number of points in a
particular period of interest, 1 is the indicator function which returns 1
if the bracketed expression is true, 0 otherwise. The n+2 and 1+ terms
are plotting position adjustments so that the empirical cumulative
distribution will never equal O or 1, for which cases the indices are
not well defined [32]. It should be noted that by normalizing these
variables, there is no assumption of normality in the original data, the
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Table 1
Balancing Authorities used in this study along with the number of wind and solar plants per BA and the installed capacity of wind and solar
as of 2020.

BA code BA name Solar Wind Solar Wind
plant plant capacity capacity
count count Mw) MW)

BPAT Bonneville Power Administration 11 29 88 3398

CISO California Independent System Operator 572 125 14789 5836

ERCOT Electric Reliability Council of Texas, Inc. 76 163 4864 27753

IPCO Idaho Power Company 20 33 318 717

ISNE ISO New England Inc. 518 82 1528 1504

MISO Midcontinent Independent Transmission 545 401 2056 26101

System Operator, Inc.

NWMT NorthWestern Energy 6 16 17 453

NYISO New York Independent System Operator 226 33 664 1989

PACE PacifiCorp - East 34 30 1286 2690

PACW PacifiCorp - West 29 19 294 694

PIM PJM Interconnection, LLC 644 129 4557 10159

PNM Public Service Company of New Mexico 51 7 370 1066

PSCO Public Service Company of Colorado 68 28 519 4491

SWPP Southwest Power Pool 55 224 393 24267

WACM Western Area Power Administration 26 17 192 782

Rocky Mountain Region

normalization serves as a convenient transformation such that we can
easily compare and analyze droughts across multiple variables but does
not impose any restrictions on the underlying distribution.

For load, the index is known as the standardized residual load index
(SRLID)

—_ ! 1 < _
SRLI(L,) = & <—n+2 [1+;ﬂ{L,£L,}]>

where L, represents the residual load at time ¢. We define residual load
in this study as load minus wind and solar production. In the analysis
residual load is expressed as a fraction of the maximum residual load
in the period so that the load data is on the same scale as the wind and
solar capacity factors.

It is necessary when applying these indices to select a period of
interest, which is used to construct the empirical distribution functions
and compute the indices. We elect to define the distributions across all
years of data, by week of the year, and by hour of the day in the case of
sub-daily droughts. This approach has the benefit of revealing abnormal
sub-daily to sub-seasonally drought conditions in all seasons, instead
of only occurring where both wind and solar are seasonally low and
addressing the need for other types of multi-season storage technologies
or thermo-electric plants like nuclear technologies for base load.

With the indices for load, wind and solar computed we turn to the
definitions of energy droughts. In this study, we define two types of
droughts — production and supply: Wind and Solar (WS) and Load,
Wind, and Solar (LWS) respectively. We presently have not included
hydropower as the time scales involved are much longer and can be
addressed with cross-seasonal water management in future studies. WS
droughts occur when both wind and solar SREPI values fall below
—1.28 for the entire drought period, which corresponds to the 10th
percentile or below of production in both resources. The drought may
last 2 h or more.! LWS droughts use the same definition for wind and
solar but add in a third criteria where the SRLI must also fall above 1.28
for the entire drought period (which corresponds to a 90th percentile
threshold for load). According to the thresholds in [32], this would be
classified as a Moderate drought. Drought definitions are summarized
in Table 2. Sensitivity analysis for the 10th percentile threshold is
presented in the supplemental materials (Figure A.7 and Figure A.8).

We compute energy droughts for seven time scales: 1-hour, 4-hour,
12-hour, 1-day, 2-day, 3-day, and 5-day. When utilizing time scales of
greater than one hour (4-hour or more), the energy is totaled over the

1 We excluded droughts lasting only 1 h due to excessive noise in the data,
all other time scales the droughts can last 1 timestep or longer

period and the threshold is applied to the aggregated data. This allows
for the possibility that not every hour during a drought period falls
below the threshold. For time scales of less than one day (1-, 4- and
12-hour), one should keep in mind that the nighttime period has no
solar generation. We allowed the nighttime period for solar to function
as a wild card, i.e. droughts that start before the nighttime where the
wind is still below the threshold, are allowed to continue overnight.

3.2. Drought frequency, duration and magnitude

In order to identify potential grid impacts and to inform grid plan-
ning, specific information about drought frequency, duration, and mag-
nitude are necessary. Frequency is defined as the average number of
droughts in a year across the 40 year historical record. Duration is
defined by the number of consecutive timesteps falling below (or above
in the case of load) the percentile threshold, multiplied by the timestep
length.

Drought magnitude for a single variable is defined by the sum-
mation of the absolute value of the index (SREPI or SRLI) over the
drought period [32]. This definition works well for single variable
droughts when using a single time scale, but is not suitable to compare
droughts across different time scales and between different compound
drought events (WS vs. LWS). For example, shorter time scales will
tend to have higher drought magnitude simply due to having more
timesteps. In addition, compound droughts with more variables will
appear to have a larger magnitude due to more variables being added
up each timestep. For these reasons, we found it necessary to modify
the definition of drought magnitude slightly. For compound droughts
we define the magnitude to be the sum of average of the absolute values
of the indices involved in the drought, effectively providing a single
average drought magnitude that is on the same scale as the original
indices. Given n variables each corresponding to a standardized index

in Iy, ..., I,, respectively, the compound drought magnitude (CDM) is
defined as

1 t+D-1 n
CDM = — ; ;ZI ||

where CDM is the compound drought magnitude, ¢ is the first timestep
of the drought, D is the drought duration. For example, for a LWS
drought,

CDM s = % Ig‘jl |SREPI(W))| + |SREPI(S))| + [SRLI(L))|
Jj=t

For WS droughts this can be easily modified by excluding the SRLI term
and dividing by 2 instead of 3.



C. Bracken et al.

Table 2

Renewable Energy 220 (2024) 119550

Definitions for WS and LWS droughts. SREPI(W,), SREPI(S,) and SRLI(L,) indicate the wind, solar and load index values at

time ¢, respectively.

Drought type

Drought definition

Wind and Solar (WS)
Load, Wind and Solar (LWS)

SREPI(W,) < —1.28 and SREPI(S,) < —1.28
SRLI(L,) > 1.28 and SREPI(W,) < —1.28 and SREPI(S,) < —1.28
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Fig. 2. Empirical CDFs for WS drought duration, for 1-hour, 1-day and 3-day time scales. CISO is highlighted in black as it tends to be the BA with the longest duration droughts

at time scales longer than hourly.
4. Results
4.1. Duration

WS drought duration is of particular interest for grid resource plan-
ning and storage sizing. Fig. 2 shows empirical cumulative distribution
functions (CDFs) of drought duration of the entire historical record for
3 time scales. 1-hour droughts are those in which every subsequent
hour consistently measures below the 10th percentile threshold; This
is useful for applications to sub-daily unit commitment. 1-day droughts
are those with consecutive days in which the total energy falls below
the threshold for each successive day; they are intended for applica-
tions to day ahead market and unit commitment. 3-day droughts are
determined similarly to 1-day droughts and are intended for managing
longer term storage and daily resources with limited ability to recharge
daily. We note that all the BAs show remarkable similarity in the
duration of droughts across all time scales as shown by similar CDF
shapes. 1-hour WS droughts in the CONUS never last more than about
1.5 days, with the longest drought of about 37 h occurring in Texas
(ERCOT). The shortest 1-hour maximum duration across BAs is roughly
16 h in California (CISO). The 1-hour drought duration across the
CONUS is strongly driven by the solar variability which is in turn
driven by cloud variability — droughts based solely on wind exhibit
much longer durations (not shown). For 1-day and 3-day time scales,
California (CISO) exhibits the longest duration of WS droughts at 6 days
and 9 days, respectively. BPAT in the Pacific Northwest has the shortest
maximum duration at about 2 days and 3 days, respectively. In general,
CISO stands out as the BA with the longest duration of droughts at 1-
day time scales or longer and ERCOT tends to have the longest droughts
at shorter time scales.

4.2. Compound drought magnitude

In the methodology section we introduced the CDM metric with
the ability to compare droughts across time scales and when using
different number of variables such as WS (production) vs. LWS (supply)
droughts. Fig. 3 shows the CDM for all BAs across all time scales. All
BAs are grouped together for a particular time scale to show the utility

of the CDM metric. Clearly LWS droughts are higher in magnitude
than WS droughts across all time scales. This finding is significant
and indicates that on average wind and solar droughts that co-occur
with high loads are more severe than those that occur otherwise. This
may be due to WS droughts occurring more often during extreme
temperature conditions when load is high, but further study is needed.
More research also is necessary to determine the specific meteorological
mechanisms, but this statistical finding may be of interest to grid
planners. Also of note, there is a minor decrease in the magnitude of
both LWS and WS droughts as time scale increases. At longer time
scales the criteria for droughts is harder to satisfy so those droughts
that do meet the criteria tend to be less severe.

4.3. Spatial distribution of frequency and maximum duration

Fig. 4 shows the frequency and maximum duration of droughts in
all the BAs included in the study for a 1-hour and 1-day time scale.
The size of the dots indicates the number of events per year and the
color indicates the maximum drought duration observed during the
historical period. 1-hour droughts exhibit some spatial grouping in
terms of drought duration, such as the Rocky Mountains, and across the
north. Daily droughts also show a clear spatial pattern. Duration tends
to be shorter (0-2 days) in the northern BAs and longer in the southern
BAs (2-4 days), with CISO again standing out as having the longest
duration droughts (4-6 days). The most frequent 1-hour droughts (9-13
per year) occur in the central and Rocky Mountain regions, while the
least frequent droughts occur in the northern regions (5-9 per year).
A similar spatial pattern is present in the 1-day droughts with the
most frequent events (4-6 per year) occurring in the central and Rocky
Mountain regions and the least frequent events (2-4 per year) occurring
in the northern regions. This result is somewhat counter-intuitive as
one might expect that regions with less solar production, simply due to
higher latitude or climatological conditions, might have more frequent
droughts. In this study, energy droughts are only identified when solar
and wind production is abnormally low for a particular period of
the year, effectively excluding seasonal signals. In regions where low
solar production is typical, it is more difficult to have abnormally low
conditions compared to regions where high production is normal, and
thus there are less frequent sub-seasonal droughts.
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4.4. Seasonal distribution of droughts

Fig. 5 shows the seasonal distributions of daily energy droughts for
each BA. Most BAs do not exhibit a strong seasonal drought signal,
except for CISO where droughts are far more common in the summer
months. Drought duration also does not exhibit a strong seasonal
distribution. These results indicate that in most BAs across the CONUS
(except CISO), compound WS droughts have an approximately equal
probability of occurring in any season. It is worth noting that the lack of
seasonal signal in most BAs is expected and certainly related to the way
droughts are defined in this study. We chose to use a moving threshold
that changes based on the week of the year. If droughts were defined
based on a single yearly threshold, then they would occur most often at
the time of the year when the wind and solar were both climatologically
lowest and would impact different storage technologies (seasonal).
When defined using a fixed threshold droughts tend to occur more often
and with longer duration in the fall and winter though the timing does
vary substantially between BAs (Figure A.9).

4.5. WS vs. LWS droughts

In order to summarize the average behavior of WS and LWS
droughts, Fig. 6 displays average frequency (events per year) and
duration of droughts in days for all 15 BAs. The left panel shows
WS droughts and the right panel shows LWS droughts. About half as
many LWS droughts tend to occur each year compared to WS. While a
decrease in frequency is expected due to the extra load criteria placed

on the drought definition, this reduction in frequency is smaller than
expected if high load events were independent of WS droughts. Given
the 90th percentile threshold used in the definition of LWS droughts, we
would expect the frequency of LWS droughts to drop by 90% if the WS
droughts were equally distributed across all potential load values. The
fact that the frequency of events instead only drops by 50% suggests
that the WS droughts preferentially occur during periods of high loads.

In Fig. 6, 1-hour and 4-hour time scale droughts have nearly indis-
tinguishable average durations, while other time scales tend to cluster
just above the minimum duration possible. The vertical lines from each
point span from the minimum drought duration to the maximum, indi-
cating that the drought duration distributions are highly skewed. The
durations do not exhibit significant differences between WS droughts
and LWS droughts.

5. Limitations and discussion

In this section we discuss some of the limitations of this study and
broader implications. First and foremost, hydropower is not represented
in this study. In some regions, like the Pacific Northwest, hydropower is
a dominant source of renewable energy such that integrating wind and
solar and mitigating local energy droughts to 6 days is not a major con-
cern. In other regions, hydropower is a conserved resource critical for
ramping, energy storage, and mitigating the cost of additional battery
storage to manage wind and solar droughts. In this study we focus on
sub-daily to multi-day droughts without consideration of hydropower
since water resources at those scales can most often be managed to



C. Bracken et al.

Renewable Energy 220 (2024) 119550

1-day
BPAT cISo ERCOT IPCO ISONE

061

0.4

) II I III I III II II IIIIII |

Jl-lll II ol n_0E58" S5l Hil, malliNnas 1 I- I
_ MISO NWMT NYISO PACE PACW
[=2]
& Drought
go.e- Length
3 (days)
£ 0.4 I osn
5 B osa
g’.oz (2.5,3]
3 I III II II I I I I III I o
S 1 s
s ILALLIN TN s IanliEllann
2o

PIM PNM PSCO SWPP WACM
061
0.4

0.0 I I I

T T
~ramtwoNnon 2N

T
~AN®OT0OONOD

T
-

104

e L B e o e e
~ramtwoOoN0e 2N

L e S e e B
~ramtwoOoN0O 2

114
124

T
~ramtwvoNno 2N

Drought Month

Fig. 5. Seasonal distributions of energy droughts. The bar heights indicate the frequency of droughts in a particular month (average number of droughts per year). The color

indicates the drought duration.

Wind and Solar Droughts

Load, Wind, and Solar Droughts

Drought Duration (days)
oo

n

| Idlﬂhalwl&

Time
Scale
1-hour
4-hour

12-hour

LN

1-day
2-day
3-day
5-day

‘o

1§y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2 3 4

b iy
5 6 7 8 9 10 11 12 13 14 15

Number of Events per Year

Fig. 6. Magnitude, duration and frequency of energy droughts for all BAs and aggregation periods. WS droughts are shown in the left panel and LWS droughts in the right panel.
The points indicate the mean drought duration for a BA at a given time scale, the vertical lines indicate the range of drought durations from the min to the max observed duration
in the 40 year period. The curved line is an exponential curve meant to illustrate a rough upper bounding region for the data.

mitigate those droughts if the market incentives are present. For studies
which consider seasonal or longer period droughts, hydropower should
be considered.

In our underlying wind data was lineally interpolated from 3-hourly
to 1-hourly. While we do not expect this to have a large impact on the
study, especially at longer time scales, this is something that should

be considered when selecting a climate dataset. Often, the upper level
wind data necessary for wind modeling is not available at the same
vertical or temporal resolution as surface data and interpolation is
necessary. Sophisticated methods are available to interpolate more ac-
curately but these come at a computational cost that may be prohibitive
when working with large climate datasets.
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Drought studies at the BA scale are strategic to understand the
potential need for local storage, and innovate on commitment ap-
proaches and market incentives. Even though we looked into LWS
(supply) droughts, we note that adjacent BAs linked by transmission
may display seasonal complementarities and thus reduce the local
stress. This research needs to feed into more complete studies where
production cost models are involved in evaluating local storage versus
transmission with social equity impacts. Those production cost model
simulations are resources intensive and our approach identifies events
to prioritize.

We chose to use a 10th percentile benchmark in this study across
wind, solar and load. Although we do provide a sensitivity analysis in
the appendix, such thresholds alone may not represent conditions that
are extreme enough to stress the grid, even when compound events are
considered. Our study could be complemented with thermal derating
and forced power outages when reaching certain thresholds which
would accentuate the impact of droughts. In that sense, 10 percent is
a regional standardized threshold but derating and unit outages could
add a different dimension to the overall severity. Finally, the choice
to use a fixed or moving threshold has implications that vary by ap-
plication and by region — a more detailed exploratory analysis should
likely consider both approaches. Nonetheless this work represents the
first benchmark of standardized contemporary energy production and
supply droughts by BA over the CONUS.

6. Conclusions

In this study we present a methodology and dataset for examining
compound wind and solar energy droughts that have the potential
to impact the power grid dynamics and local supply. Specifically we
provide the first standardized benchmark of energy droughts in the
Continental United States (CONUS). By focusing our results on 15
Balancing Authorities (BAs) with numerous utility scale wind and solar
plants, we are able to draw conclusions that are applicable to grid
planning and storage sizing. BA-level load was included to quantify
high residual load coincident with Wind and Solar (WS) droughts,
providing a view of the potential impact of compound Load, Wind, and
Solar (LWS) events. We utilized a dataset of hourly BA level generation
which includes thousands of 2020 infrastructure wind and solar plants.
Using this dataset we examine the frequency, duration, and magnitude
of energy droughts at a variety of temporal and spatial scales.

To classify compound droughts we utilize the standardized renew-
able energy production index (SREPI) and the standardized residual
load index (SRLI). This study is the first application of these indices
outside of the original paper focusing on the development of the indices
and a case study in Europe [32]. In addition, we introduce a definition
of compound drought magnitude (CDM) that is suitable for comparing
droughts across different timescales and with any number of variables.

WS droughts are typically less frequent and shorter in the northern
CONUS compared to other regions. California stands out as having
the longest duration droughts at time scales 1-day or longer but hav-
ing among the shortest duration of droughts at shorter time scales.
Droughts in California also show a strong seasonality, tending to occur
in the summer, while other BAs tend to show a more even distribution
across the year. Adjacent droughts in the Pacific Northwest and Rockies
tend to have some of the lowest and highest drought frequencies, re-
spectively. At shorter timescales, eastern BAs have some of the longest
drought durations recorded. Existing hydropower resources in the area
may be able to mitigate this given the drought durations tend to be
low to moderate at longer time scales. ERCOT which covers most of
Texas, has limited interconnections with other BAs. It also has some of
the longest 1-hour droughts in the record, although at longer timescales
the droughts are on the lower end compared to other BAs. This suggests
a need for short term storage infrastructure in a decarbonized future.

LWS droughts differ from WS droughts notably in the average
frequency of events per year, suggesting that WS droughts occur pref-
erentially with high load events. Additionally, LWS droughts exhibit
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higher magnitudes on average than WS droughts. Both of these findings
have implications to grid planning and storage sizing. WS and LWS
droughts exhibit similar durations across all time scales.

The standardized approach in this study supports the synthesis of
this type of research at storage and energy system security scales.
This research on standardized drought informs research in storage,
transmission siting and sizing, characterization of extreme events for
climate stress tests and reliability studies. Some potential future work
includes (i) incorporating derating and forced outages, (ii) applications
to evolving infrastructure, (iii) future climate, and (v) future markets
since a “must-take” approach in the U.S. may not be appropriate under
deep decarbonization scenarios.
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