

LFU Status Update for the 2025-26 IRM Study

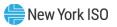
Max Schuler

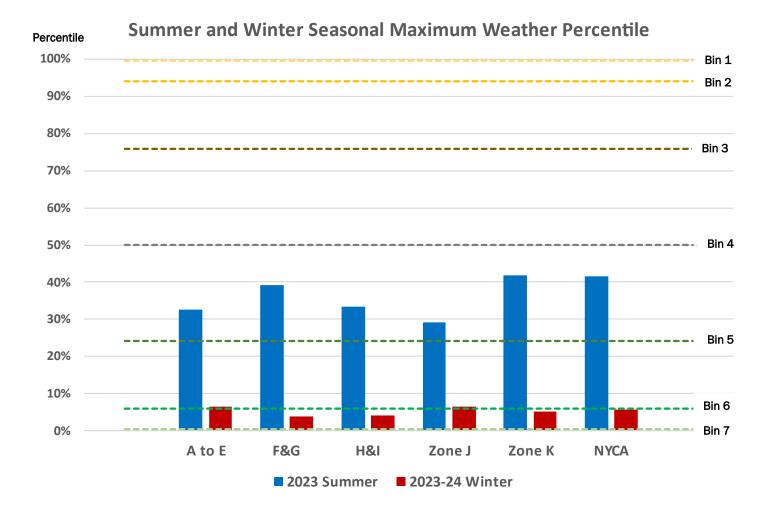
Demand Forecasting & Analysis

NYSRC ICS

May 1, 2024

Agenda


- Review of summer 2023 and winter 2023-24 extreme weather conditions
- LFU recommendation maintain existing LFU multipliers
- LFU multipliers for 2025-26 IRM study



Review of Extreme Weather Conditions

- Seasonal maximum extreme weather conditions were evaluated for summer 2023 and winter 2023-24 by LFU area (A to E, F&G, H&I, Zone J, Zone K) and at the NYCA level
- Percentiles were calculated based on a 20-year distribution of Cumulative Temperature & Humidity Index (CTHI) for summer, and HDD55 (Heating Degree Days at a 55-degree set point) for winter

Summer and Winter Seasonal Maximum Weather											
Area	A to E	F&G	H&I	Zone J	Zone K	NYCA					
Average CTHI	83.3	85.4	86.1	86.7	86.0	84.2					
Summer 2023 CTHI	82.6	84.9	85.2	85.6	85.5	83.8					
Summer 2023 Percentile	33%	39%	33%	29%	42%	42%					
Average HDD	50.3	49.1	43.3	39.9	40.6	44.7					
Winter 2023-24 HDD	43.1	41.0	36.2	33.6	33.9	38.1					
Winter 2023-24 Percentile	6%	4%	4%	7%	5%	6%					

Conclusions & LFU Recommendation

- Seasonal maximum temperatures were below normal in summer 2023, and well below normal in winter 2023-24
- The summer peak in 2023 occurred in September, outside of the design summer peak window of July & August. July maximum temperatures were even lower than the seasonal maximums
- A similar analysis of the coincident peak-producing weather distributions relative to the July and September 2023 peaks, as well as the January 2024 peak, showed similar below normal results
- Since peak temperatures were below normal in these two seasons, there is no additional information to benefit the fit of load to extreme upper-bin weather conditions (which are impactful to resource adequacy modeling). Thus, it is recommended to retain the current base LFU multipliers presented in spring 2023

LFU Multipliers for the 2025 IRM Study

(Existing LFU multipliers used in the 2024 IRM Study, as shown in the IRM Report Appendices)

Table A.7 2024 IRM Study Summer and Winter Load Forecast Uncertainty Multipliers

Bin	Bin z	Bin Probability		Winter				
			A-E	F&G	H&I	J	к	NYCA
Bin 1	2.74	0.62%	113.93%	110.69%	110.18%	108.88%	116.62%	110.37%
Bin 2	1.79	6.06%	109.54%	107.86%	107.34%	105.42%	111.14%	106.37%
Bin 3	0.89	24.17%	104.86%	104.04%	103.09%	101.61%	105.52%	102.75%
Bin 4	0.00	38.29%	100.00%	99.46%	97.81%	97.51%	100.00%	99.42%
Bin 5	-0.89	24.17%	95.00%	94.29%	91.70%	93.12%	94.48%	96.29%
Bin 6	-1.79	6.06%	89.91%	88.61%	84.93%	88.45%	88.89%	93.30%
Bin 7	-2.74	0.62%	84.79%	82.53%	77.65%	83.48%	83.27%	90.41%

Questions?

Our Mission & Vision

 \checkmark


Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

