

2025–2026 IRM PBC BTM Solar Modeling Sensitivity

Mikaela Lucas

NYISO

ICS Meeting #293

September 4, 2024

Agenda

- Background
- Methodology and Assumptions
- Impact Assessment
- Next Steps

Background

Background

- With the expectation of increasing Behind-the-Meter (BTM) solar penetration over time, monitoring and quantifying the impact of BTM solar resources in the Installed Reserve Margin (IRM) model is of increasing importance
- The purpose of modeling BTM solar as a supply resource is to more clearly capture the evolving magnitude of the impact of BTM solar resources
- Installed Capacity Subcommittee (ICS) expressed interest in a sensitivity analysis of modeling BTM solar as a supply resource in the 2025-2026 IRM Preliminary Base Case (PBC)

Methodology and Assumptions

Overview of BTM Solar Modeling

- To model BTM solar as a supply resource, both supply-side and load-side modeling need adjustments
- BTM solar data from the NYISO Load & Capacity Data report (Gold Book) would be utilized to develop the hourly profiles for BTM solar load for each zone. Inputs include:
 - NYISO's forecasted annual energy reduction by BTM solar PV (2024 Gold Book Baseline Forecast Table I-9b)

	E	3TM Sola	ir Annual E	inergy R	eductions	s by Zone	e (2024 G	iold Book	Table I-9	9b) – GW	'n	
Year	Α	В	С	D	Е	F	G	Н	I	J	к	NYCA
2025	457	748	1,078	92	795	882	944	133	186	705	1,382	7,402

- Energy normalized representative hourly values of BTM solar
 - These values are multiplied by the Gold Book forecasted BTM solar production/impact data to produce hourly MW values for the applicable year
- The modeling changes should not require changes to the calculation method for the IRM
 - Net demand forecast should continue to be the denominator of the IRM calculation
 - The MW of BTM solar would not be counted in the total ICAP in the numerator of the IRM calculation
 - The derating factor of BTM solar would not be included in the IRM zonal derating factors used in the shifting methodology

BTM Solar Modeling Methodology

Load-side modeling

- Modeled as negative Demand Side Management (DSM) units
- Modeled using the 2013, 2017, and 2018 BTM solar zonal hourly load profiles
- The BTM solar shapes are aligned with the underlying load shapes
 LFU bins 1 – 2: 2013
 LFU bins 3 – 4: 2018
 LFU bins 5 – 7: 2017
- Not subject to the Load Forecast Uncertainty (LFU) multipliers

Supply-side modeling

- Modeled as positive DSM units
- Modeled using the recent 5 years of hourly profiles
 - The impact assessment presented herein uses 2019 2023 shapes
- One of the historical shapes is chosen randomly for each replication during the Multi-Area Reliability Simulation (MARS) analysis
 - The selection will be consistent with the selection of the other DSM resources

Impact Assessment

Sensitivity Analysis Results (Tan45)

		IRM	J	LCR	K LCR	G-J Locality	
2025-2026 IRM F	РВС	23.60%	75.98%		102.52%	87.54%	
Sensitivity #7 - BTM Sola	24.65%	76.88%		104.14%	88.20%		
Delta	Delta		0.90%		1.62%	0.66%	
	LOLE (days/yr.)	LOLH (hours/yr.)	EUE (MWh/yr.)	Norm Simple N	alized EUE /lethod" (ppm)	Normalized EUE "Bin Method" (ppm)	
2025-2026 IRM PBC	0.100	0.388	234.724 1		L.554	1.386	
BTM Solar Modeling	0.100	0.410	260.175	1	L.723	1.537	

Modeling BTM solar as a supply resource would have increased the IRM for the 2025-2026 IRM PBC by 1.05%

- The increase is due to the probabilistic nature of the BTM solar modeling construct which increases randomness and uncertainty in the model
- The locational capacity requirements (LCRs) for the 2025-2026 IRM PBC, as determined using the Tan45 methodology, would also have increased
 - The Load Zone K LCR would have increased by a greater margin because the quantity of BTM solar in Load Zone K is almost double that of Load Zone J
- Modeling BTM solar as a supply resource in the 2025-2026 IRM PBC database would have increased both the Loss of Load Hours (LOLH) and Expected Unserved Energy (EUE)
 - The BTM solar modeling construct increases randomness and uncertainty in the model

Next Steps

Next Steps

- Consider a potential impact assessment of modeling BTM solar as a supply resource in the 2025-2026 IRM Final Base Case (FBC)
- Provide ongoing updates to the ICS to share progress and solicit feedback

Questions?

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

