

2025-2026 Installed Reserve Margin (IRM) Final Base Case (FBC) - Tan45 Results

Sanket Milind Ulagadde

ICS Meeting #296

November 6, 2024

2025-2026 IRM: Tan45 Results Comparison

Results	2025-2026 Base (IRM Preliminary 2 Case (PBC)	2025-2026 IRM Final Base Case (FBC)	Difference (FBC – PBC)
IRM (%)		23.6	24.4	0.8
Load Zone J (%)		76.0	75.6	-0.4
Load Zone K (%)	1	02.5	107.3	4.8
G-J Locality (%)		87.5	86.9	-0.6
NYCA EOP (Days/Y	r)	7.4	7.0	-0.4
Case	Loss Of Load Expectation (LOLE) days/yr	Hourly Loss of Load Expectation (LOLH) hours/yr	Normalized Loss of Energ Expectation or LOEE (Expec Unserved Energy or EUE) "Simple Method" ppm	y ted Normalized LOEE (EUE)) "Bin Method" ppm
2025-2026 IRM PBC	0.100	0.386	1.554	1.386
2025-2026 IRM FBC	0.100	0.374	1.437	1.284

Key Observations

- The Tan45 results for the 2025-2026 IRM FBC are relatively consistent with the parametric results
 - 2025-2026 IRM FBC Parametric Results = 24.5% IRM (assessed relative to the 2025-2026 IRM PBC)
 - 2025-2026 IRM FBC Tan45 Results = 24.4% IRM
- The NYISO identified the following contributing factors to the increase in the IRM and Load Zone K Tan45-determined locational capacity requirement (LCR) relative to the 2025-2026 IRM PBC
 - Fall Load Forecast
 - Compared to the load forecast for the PBC, the load forecast in Load Zone A increased while load forecast in Load Zone J decreased, generating upward pressure on IRM as risk is distributed more upstate
 - Updated Emergency Operating Procedures (EOP) Assumptions
 - Relative to the PBC, the increased Special Case Resource (SCR) MW enrollments and lower voltage reduction capability represented in the FBC increased the IRM
 - Updated Unforced Capacity Deliverability Rights (UDR) Elections
 - Updated election information placed upward pressure on the IRM and Load Zone K LCR

Load Zone J – LCR Curve

- The updated load forecast and SCR MW enrollments impact the Load Zone J LCR curve.
- The redistribution of the risk and load profile makes the capacity in upstate more valuable. This causes the low point on the Load Zone J LCR curve to be steeper than the PBC curve.
- With an increasing IRM, this capacity is less and less valuable to upstate and can be used to support Load Zone J.
- Due to this steeper nature, the Tan45 balancing point would be pushed outward, which increases the IRM and decreases the Load Zone J LCR.

J LCR Curve Comparison (IRM25 PBC vs IRM25 FBC)

Load Zone K – LCR Curve

- With the updated UDR elections and updated voltage reduction, the Load Zone K LCR curve is shifted in an upward direction.
- The balancing effect of upstate supporting downstate, in combination with the changes to the Load Zone K LCR curve, increases the IRM and Load Zone K LCR.

Summary

- The Tan45 IRM results are relatively consistent with the parametric analysis results from PBC to FBC.
- The impact of the updates to the load forecast, EOP assumptions, and UDR elections causes the Load Zone J and Load Zone K LCR curves to become steeper and move upwards, relative to PBC results.
- The IRM and Load Zone K LCR increased relative to the PBC, while the Load Zone J LCR decreased.
- 2025-2026 IRM FBC tan45 results:
 - IRM = 24.4%
 - Load Zone J LCR = 75.6%
 - Load Zone K LCR = 107.3%
 - G-J Locality LCR = 86.9%

© COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED.

NYCA LOLE Risk Distribution:

NYCA wide hourly LOLE risk distribution*

	Zonal LOL		
	2025-	2025-	Difference
	2026 IRM	2026 IRM	(FBC –
Zone	FBC	PBC	PBC)
NY_A	0.039	0.017	0.022
NY_B	0.056	0.057	-0.001
NY_C	0.000	0.000	0.000
NY_D	0.000	0.000	0.000
NY_E	0.056	0.057	-0.001
NY_F	0.000	0.000	0.000
NY_G	0.000	0.000	0.000
NY_H	0.063	0.065	-0.002
NY_I	0.063	0.065	-0.002
NY_J	0.069	0.071	-0.002
NY_K	0.078	0.079	-0.001
NYBA	0.100	0.100	0.000

NYCA zonal annual LOLE**

* : HB=Hour Beginning

** : Standard rounding method is used to represent 3 significant digits after decimal point

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

